About

Download the prospectus

To achieve a global transition to a low-carbon energy system within the coming decades, carbon capture, utilization, and storage (CCUS) technologies can and should play a vital role in limiting or even reducing the amount of carbon dioxide (CO2) in the atmosphere. These technologies hold great promise for ameliorating the effects of excess emissions by capturing CO2—particularly from industrial operations and power facilities—and storing it safely.

Current CCUS technology has been demonstrated at the million-ton-of-CO2 scale at about 20 facilities worldwide; however, there is great opportunity for improvements in both cost and performance.

The development of improved technologies for carbon capture, utilization, and storage will require a wide range of expertise—from novel chemistry, biology, and engineering for capture to subsurface science and engineering at field scale for storage. It will also require cross-disciplinary research in engineering, science, and policy, as well as strong collaborations among academia, industry, and government.

These elements are combined through MIT’s CCUS Center, one of the Low-Carbon Energy Centers developed by the MIT Energy Initiative to advance technologies key to addressing climate change.

Goals and Approach

The goals of the CCUS Center are to:

Research Specialties

The CCUS Center draws on MIT’s faculty members’ extensive existing research capability to focus on three major areas: capture, utilization, and geologic storage. To solve the challenges associated with CCUS, participants in the Center apply innovative technology in fields such as molecular simulation; materials design; catalytic processes; fluid mechanics; seismic, geodetic, and electromagnetic imaging; and systems analysis. In addition to the technology focus, the Center’s research capability includes economics, policy, regulatory, and business expertise.

Additionally, the Center’s techno-economic and systems analysis group focuses on technology assessments, economic modeling, and an analysis of the regulatory and political aspects of deploying CCUS technologies at scale. Interactions with Center members help guide the direction of this work.

Capture:

CO2 reduction and utilization:

Geologic storage:

Exploratory Projects

The goal of these projects is to explore new areas that can advance the application of CCUS technology. The Center looks for innovative faculty members and challenges them to use their expertise to solve problems in CCUS through Center member-supported seed funding. The Center currently has four exploratory research projects: