In 1987 in a village in Mali, workers were digging a water well when they felt a rush of air. One of the workers was smoking a cigarette, and the air caught fire, burning a clear blue flame. The well was capped at the time, but in 2012, it was tapped to provide energy for the village, powering a generator for nine years.
The fuel source: geologic hydrogen.
For decades, hydrogen has been discussed as a potentially revolutionary fuel. But efforts to produce “green” hydrogen (splitting water into hydrogen and oxygen using renewable electricity), “grey” hydrogen (making hydrogen from methane and releasing the biproduct carbon dioxide (CO2) into the atmosphere), “brown” hydrogen (produced through the gasification of coal), and “blue” hydrogen (making hydrogen from methane but capturing the CO2) have thus far proven either expensive and/or energy intensive.
Enter geologic hydrogen. Also known as “orange,” “gold,” “white,” “natural,” and even “clear” hydrogen, geologic hydrogen is generated by natural geochemical processes in the earth’s crust. While there is still much to learn, a growing number of researchers and industry leaders are hopeful that it may turn out to be an abundant and affordable resource lying right beneath our feet.
“There’s a tremendous amount of uncertainty about this,” noted Robert Stoner, the founding director of the MIT Tata Center for Technology and Design, in his opening remarks at the MIT Energy Initiative (MITEI) Spring Symposium. “But the prospect of readily producible clean hydrogen showing up all over the world is a potential near-term game changer.”
A new hope for hydrogen
This April, MITEI gathered researchers, industry leaders, and academic experts from around MIT and the world to discuss the challenges and opportunities posed by geologic hydrogen in a daylong symposium entitled “Geologic hydrogen: Are orange and gold the new green?” The field is so new that, until a year ago, the U.S. Department of Energy (DOE)’s website incorrectly claimed that hydrogen only occurs naturally on earth in compound forms, chemically bonded to other elements.
“There’s a common misconception that hydrogen doesn’t occur naturally on earth,” said Geoffrey Ellis, a research geologist with the U.S. Geological Survey. He noted that natural hydrogen production tends to occur in different locations from where oil and natural gas are likely to be discovered, which explains why geologic hydrogen discoveries have been relatively rare, at least until recently.
“Petroleum exploration is not targeting hydrogen,” Ellis said. “Companies are simply not really looking for it, they’re not interested in it, and oftentimes they don’t measure for it. The energy industry spends billions of dollars every year on exploration with very sophisticated technology, and still they drill dry holes all the time. So I think it’s naive to think that we would suddenly be finding hydrogen all the time when we’re not looking for it.”
In fact, the number of researchers and startup energy companies with targeted efforts to characterize geologic hydrogen has increased over the past several years—and these searches have uncovered new prospects, said Mary Haas, a venture partner at Breakthrough Energy Ventures. “We’ve seen a dramatic uptick in exploratory activity, now that there is a focused effort by a small community worldwide. At Breakthrough Energy, we are excited about the potential of this space, as well as our role in accelerating its progress,” she said. Haas noted that if geologic hydrogen could be produced at $1 per kilogram, this would be consistent with the DOE’s targeted “liftoff” point for the energy source. “If that happens,” she said, “it would be transformative.”
Haas noted that only a small portion of identified hydrogen sites are currently under commercial exploration, and she cautioned that it’s not yet clear how large a role the resource might play in the transition to green energy. But, she said: “It’s worthwhile and important to find out.”
Inventing a new energy subsector
Geologic hydrogen is produced when water reacts with iron-rich minerals in rock. Researchers and industry are exploring how to stimulate this natural production by pumping water into promising deposits.
In any new exploration area, teams must ask a series of questions to qualify the site, said Avon McIntyre, the executive director of HyTerra Ltd., an Australian company focused on the exploration and production of geologic hydrogen. These questions include: Is the geology favorable? Does local legislation allow for exploration and production? Does the site offer a clear path to value? And what are the carbon implications of producing hydrogen at the site?
“We have to be humble,” McIntyre said. “We can’t be too prescriptive and think that we’ll leap straight into success. We have a unique opportunity to stop and think about what this industry will look like, how it will work, and how we can bring together various disciplines.” This was a theme that arose multiple times over the course of the symposium: the idea that many different stakeholders—including those from academia, industry, and government—will need to work together to explore the viability of geologic hydrogen and bring it to market at scale.
In addition to the potential for hydrogen production to give rise to greenhouse gas emissions (in cases, for instance, where hydrogen deposits are contaminated with natural gas), researchers and industry must also consider landscape deformation and even potential seismic implications, said Bradford Hager, the Cecil and Ida Green Professor of Earth Sciences in the MIT Department of Earth, Atmospheric, and Planetary Sciences.
The surface impacts of hydrogen exploration and production will likely be similar to those caused by the hydro-fracturing process used in oil and natural gas extraction, Hager said.
“There will be unavoidable surface deformation. In most places, you don’t want this if there’s infrastructure around,” Hager said. “Seismicity in the stimulated zone itself should not be a problem, because the areas are tested first. But we need to avoid stressing surrounding brittle rocks.”
McIntyre noted that the commercial case for hydrogen remains a challenge to quantify, without even a “spot” price that companies can use to make economic calculations. Early on, he said, capturing helium at hydrogen exploration sites could be a path to early cashflow, but that may ultimately serve as a “distraction” as teams attempt to scale up to the primary goal of hydrogen production. He also noted that it is not even yet clear whether hard rock, soft rock, or underwater environments hold the most potential for geologic hydrogen, but all show promise.
“If you stack all of these things together,” McIntyre said, “what we end up doing may look very different from what we think we’re going to do right now.”
The path ahead
While the long-term prospects for geologic hydrogen are shrouded in uncertainty, most speakers at the symposium struck a tone of optimism. Ellis noted that the DOE has dedicated $20 million in funding to a stimulated hydrogen program. Paris Smalls, the co-founder and CEO of Eden GeoPower Inc., said “we think there is a path” to producing geologic hydrogen below the $1 per kilogram threshold. And Iwnetim Abate, an assistant professor in the MIT Department of Materials Science and Engineering, said that geologic hydrogen opens up the idea of earth as a “factory to produce clean fuels,” utilizing the sub-surface heat and pressure instead of relying on burning fossil fuels or natural gas for the same purpose.
“Earth has had 4.6 billion years to do these experiments,” said Oliver Jagoutz, a professor of Geology in the MIT Department of Earth, Atmospheric, and Planetary Sciences. “So there is probably a very good solution out there.”
Alexis Templeton, a professor of geological sciences at the University of Colorado Boulder, made the case for moving quickly. “Let’s go to pilot, faster than you might think,” she said. “Why? Because we do have some systems that we understand. We could test the engineering approaches and make sure that we are doing the right tool development, the right technology development, the right experiments in the lab. To do that, we desperately need data from the field.”
“This is growing so fast,” Templeton added. “The momentum and the development of geologic hydrogen is really quite substantial. We need to start getting data at scale. And then, I think, more people will jump off the sidelines very quickly.”