Post-Combustion Carbon Dioxide Capture using Electrochemically-Mediated Amine Regeneration

Energy & Environmental Science, vol 6(8), pp 2505 - 2517, June (2013). Note: Subscription may be required to view article

June 2013

More information:

Electrochemically mediated amine regeneration is a new post-combustion capture technology with the potential to exploit the excellent removal efficiencies of thermal amine scrubbers while reducing parasitic energy losses and capital costs. The improvements result from the use of an electrochemical stripping cycle, in lieu of the traditional thermal swing, to facilitate CO2 desorption and amine regeneration; metal cations generated at an anode react with the amines, displacing the CO2, which is then flashed off, and the amines are regenerated by subsequent reduction of the metal cations in a cathode cell. The advantages of such a process include higher CO2desorption pressures, smaller absorbers, and lower energy demands. Several example chemistries using different polyamines and copper are presented. Experimental results indicate an open-circuit efficiency of 54% (15 kJ per mole CO2) is achievable at the tested conditions and models predict that 69% efficiency is possible at higher temperatures and pressures. A bench scale system produced 1.6 mL min−1 CO2 while operating at 0.4 volts and 42% Faradaic efficiency; this corresponds to a work of less than 100 kJ per mole.

MITEI Authors

Howard Herzog Senior Research Engineer

MIT Energy Initiative

Ahmed Ghoniem Professor

Department of Mechanical Engineering

We're hiring! Learn more and apply