Publications

Journal articles

August 2019

Deep long short-term memory networks for nonlinear structural seismic response prediction

Ruiyang Zhang, Zhao Chen, Su Chen, Jingwei Zheng, Oral Büyüköztürk, Hao Sun

Abstract

This paper presents a comprehensive study on developing advanced deep learning approaches for nonlinear structural response modeling and prediction. Two schemes of the long short-term memory (LSTM) network are proposed for data-driven structural seismic response modeling. The proposed deep learning model, trained on available datasets, is capable of accurately predicting both elastic and inelastic response of building structures in a data-driven fashion as opposed to the classical physics-based nonlinear time history analysis using numerical methods. In addition, an unsupervised learning algorithm based on a proposed dynamic K-means clustering approach is established to cluster the seismic inputs in order to (1) generate the least but the most informative datasets for training the LSTM and (2) improve the prediction accuracy and robustness of the model trained with limited data. The performance of the proposed approach is successfully demonstrated through three proof-of-concept studies that include a nonlinear hysteretic system, a real-world building with field sensing data, and a steel moment resisting frame. The results show that the proposed LSTM network is a promising, reliable and computationally efficient approach for nonlinear structural response prediction, and offers significant potential in seismic fragility analysis of buildings for reliability assessment.

Acknowledgements

The authors acknowledge the partial support provided by Royal Dutch Shell through the BeeView 2 Project. We also would like to thank chief scientist Dr. Dirk Smit and project managers Dr. Lorna Ortiz-Soto and Dr. Xander Campman for their oversight of this work. The data and codes used in this paper will be publicly available on GitHub at https://github.com/zhry10/DeepLSTM after the paper is published.

Research Areas
MITEI Author
Professor
Department of Civil and Environmental Engineering

We're hiring! Learn more and apply