
Electrification and Decarbonization
of Industry

Now: 33% of CO2 emissions.
Goal: net-zero.

Co-Leads: Yet-Ming Chiang, Bilge Yildiz

Massachusetts Institute of Technology
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Mt CO2e

Industrial pillars of society, ammonia, cement, ethylene and steel
responsible for 45% of industrial CO2 emissions and 15% of global emissions 



Portland 
cement

Cement produces 
8% of global CO2
and has had the least 
innovation of any 
emissions category

billion tons 
cement /year4 

1ton 
of CO2

1ton =
CONFIDENTIAL & PROPRIETARY

50% of cement’s CO2

is from fossil fuel.

CaCO3 + fossil-fueled heat → CaO + CO2

Limestone 1,000°C Lime 

The other 50% is 

from limestone. 

Lime + silica 1,500°C Cement 

Electrifying and Decarbonizing Industry

Need to master the ability to make and break chemical bonds using electricity -
electrochemistry - to decarbonize manufacturing of 

ammonia, ethylene, cement, and steel

Natural 
limestone

Impurities
(insoluble)

Pure 
hydrated lime

Electrolytic decarbonation of limestone to lime

L. D. Ellis, et al., Y-C. Chiang, PNAS, 201821673 (2019).



Electrification and Decarbonization of Industry

Need to master the ability to make and break chemical bonds using electricity -
electrochemistry - to decarbonize manufacturing of 

ammonia, ethylene, cement, and steel

Steel: CO2-source at iron ore reduction
2 tonnes of CO2 / tonne of steel

Electrolytic CO2-free steel

Electrochemical reduction 
and separation of iron 

oxide

A. Allanore, MIT.



Ammonia: CO2 source, thermal input to H2 and 
Haber-Bosch (HB)

Need to master the ability to make and break chemical bonds using electricity -
electrochemistry - to decarbonize manufacturing of 

ammonia, ethylene, cement, and steel

HB reactor
T=400-450oC

P=150-250 bar

NH3

N2

H2

 Energy intensive due to elevated temperature 
and high pressure operation

 H2 from steam-methane-reforming (SMR):  the 
most energy intensive and carbon emitting part 
of the HB

Electrification and Decarbonization of Industry

1.5 tCO2-eq/tNH3

Electrolytic CO2-free ammonia
Fully electrified process for converting nitrogen and water 

into ammonia

N. Lazouski, et al., and K. Manthiram, Nature 
Catalysis 3 (2020).

Liquid electrochemistry (RT) Solid, ceramic electrochemical cell
(T ~500oC)

Higher current densities

Higher energy efficiency

Y. Shao-Horn, A. Ghoniem, J. Li, R. Gomez-
Bombarelli, Y. Surendranath, B. Yildiz, MIT



Ethylene: CO2 source, thermal energy input, 
conversion selectivity 

Electrolytic CO2-free ethylene

Need to master the ability to make and break chemical bonds using electricity -
electrochemistry - to decarbonize manufacturing of 

ammonia, ethylene, cement, and steel

 Highly endothermic reaction (at 750-950oC)
 Hydrocarbon combustion for cracking

Electrification and Decarbonization of Industry

Steam Cracker
T=750-950oC

Naphtha/C2H6

H2O

C2H4

H2, CO, CO2…

Naphtha → 2.9 tCO2-eq/tC2H4

Ethane→1.5 tCO2-eq/tC2H4

Electrochemical oxidative coupling of methane (E-OCM);    air and 
methane to ethylene

Lower operating T (600-800oC) 

No extra cost for O2 separation 

More selective C2H4 production 
wit high yield.

C2H4 + electricity (SOFC) / C2H4

+ chemical (SOEC) 

B. Yildiz, H. Tuller, B. Green, A. Ghoniem, T. Swager, MIT
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Can we beat the selectivity – conversion competition using 
electrochemistry?

✓Reaction exothermicity reduces temperature

✓Natural gas from shale cheap and available

✓Steam in the products easy to separate

2CH4 +
1

2
O2

Cat
C2H6 + H2O, ΔH298K

o = −176.9 ΤkJ mol C2H6

2CH4 + O2
Cat

C2H4 + 2H2O, ΔH298K
o = −281.8 ΤkJ mol C2H4

Thermochemical OCM

G. Dimitrakopoulos, B. Yildiz, and A. Ghoniem, Sustainable Fuels, 2021

“Deep oxidation” of CH4 to CO/CO2 limits selectivity
to C2 (C2H6 and C2H4), and yield.

M.A. Barteau, Journal of Catalysis 408 (2022) 173–178

C2(current)?

Challenge



Electrochemical oxidative coupling of methane (E-OCM);    
air and methane to ethylene
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Use electrochemistry to drive high rate

@Lower operating T (600-800oC) 

→ Higher selectivity to C2

No extra cost for O2 separation 
C2H4 + electricity (SOFC) 
C2H4 + H2, CO (SOEC) 

SOFC technology exists, but 
anode for E-OCM does not…

Bloom Energy
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EOCM – C2 selectivity goes up with increasing current density!
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20 mA
2 mA

 Selective oxidative coupling
needs O−, O2

− or O2
2−.

 Onset of significant O2

concentration increase

◼ Correlates with 
selectivity increase!

 Hypothesis: O2 evolution 
produces species selective 
for C2’s

380 mA
Region #1: low I

(2 - 20mA)

Region #2: high I
(40 - 380mA)



Integrative approach

Connecting input and output streams to 
create a self-contained supply chain that 
minimizes overall emissions: waste 
streams as feedstocks
• CO2 from CaCO3 as supply to ethylene 

synthesis
• H2 from electrochemical ethylene to 

extract iron from iron ore, or to feed to 
ammonia synthesis

• H2 as waste in many electrochemical 
processes for electricity generation.

• Colocation versus pipelines
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