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Industrial pillars of society, ammonia, cement, ethylene and steel
responsible for 45% of industrial CO, emissions and 15% of global emissions
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Electrifying and Decarbonizing Industry

Need to master the ability to make and break chemical bonds using electricity -
electrochemistry - to decarbonize manufacturing of
ammonia, ethylene, cement, and steel
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Electrification and Decarbonization of Industry

Need to master the ability to make and break chemical bonds using electricity -
electrochemistry - to decarbonize manufacturing of
ammonia, ethylene, cement, and steel
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Electrification and Decarbonization of Industry

Need to master the ability to make and break chemical bonds using electricity -
electrochemistry - to decarbonize manufacturing of
ammonia, ethylene, cement, and steel
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Ceramic Electrolyte

Energy intensive due to elevated temperature - ¥ ¥
and high pressure operation fﬁﬁﬁf

H, from steam-methane-reforming (SMR): the H,0—H, + O, P\&\
most energy intensive and carbon emitting part = —

of the HB N. Lazouski, et al., and K. Manthiram, Nature
Catalysis 3 (2020).
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Electrification and Decarbonization of Industry

Need to master the ability to make and break chemical bonds using electricity -
electrochemistry - to decarbonize manufacturing of
ammonia, ethylene, cement, and steel
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conversion selectivity — Electrochemical oxidative coupllng of methane (E-OCM); air and

- methane to ethylene
Naphtha/C,H, = 3 _
- Steam Cracker 5 2CH, + 202 — C,H, + 2H,0 + 4e"

T=750-950°C
- CH, C,H, C.H, Lower operating T (600-800°C)
CH, CH,  cH, :
' No extra cost for O, separation
Naphtha = 2.9 to, oo/ tcoma _C N - More selective C,H, production
Ethane=>1.5 tCOZ-eq/tC2H4 _ eramic Electrolyte wit high yield.
Highly endothermic reaction (at 750-950°C) C,H, + electricity (SOFC) / C,H
: : 2, e
Hydrocarbon combustion for cracking o o s 0| + chemical (SOEC)
- 0, + 4e” — 202 . g




Can we beat the selectivity — conversion competition using

electrochemistry?

Thermochemical OCM
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2CH, + 0y — C,H, + 2H,0, AHSsx = —281.8kJ/mol C,H,

v’ Reaction exothermicity reduces temperature
v"Natural gas from shale cheap and available
v'Steam in the products easy to separate

G. Dimitrakopoulos, B. Yildiz, and A. Ghoniem, Sustainable Fuels, 2021
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“Deep oxidation” of CH, to CO/CO, limits selectivity
to C, (C,H and C,H,), and yield.

M.A. Barteau, Journal of Catalysis 408 (2022) 173-178



Electrochemical oxidative coupling of methane (E-OCM);

air and methane to ethylene

2CH, + 202 — C,H, + 2H,0 + de- Use electrochemistry to drive high rate

@Lower operating T (600-800°C)

c H 02H4 . . .
CH 2" 74
| ‘ cH, CH:  on, —> Higher selectivity to C,
£ No extra cost for O, separation
B T4 C,H, + electricity (SOFC)
6/) Ceramic Electrolyte Ioz' C,H, + H,, CO (SOEC)
sz Bloom Energy

B SOFC technology exists, but
B8 anode for E-OCM does not...
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EOCM - C, selectivity goes up with increasing current density!
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Integrative approach

Connecting input and output streams to

create a self-contained supply chain that

minimizes overall emissions: waste

streams as feedstocks

* CO, from CaCO; as supply to ethylene
synthesis

* H, from electrochemical ethylene to

extract iron from iron ore, or to feed to

ammonia synthesis

H, as waste in many electrochemical

processes for electricity generation.

* Colocation versus pipelines
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