# Winter is coming Can Ireland keep the lights on and homes warm?

Prof. Brian Ó Gallachóir MITEI Visiting Scholar

O)



energy.mit.edu

@mitenergy



#### Three challenges coinciding this winter in a 'perfect storm'

#### Eat or heat?

Power cuts?

**Enough gas?** 



# **RTÉ** News

ESRI says 43% of households may be in 'energy poverty'

IRELAND • 2 SEP 2022, 4:38AM

# **THE IRISH TIMES**

How did Ireland almost run out of electricity?

**Paul Deane and** Brian Ó Gallachóir Opinion

cern that requires attention. The last element of the crisis was that er plants we rely on were not available ause of delays in maintenance and pairs during 2020 due to the pandem

From 2005 to 2020. success story in addre change was in the elec

| BUS<br>Pos | iness<br>t |                    |      |             |
|------------|------------|--------------------|------|-------------|
| POLITICS   | NEWS FOCUS | ANALYSIS & OPINION | TECH | LIFE & ARTS |

#### **ENERGY**

Irish authorities were told gas flow could drop by 12% if Russia cuts supply to EU



#### Gas and electricity price rises are unprecedented



- Post-COVID rebound increased demand for natural gas putting upward pressure on prices
- April 2021 unusually cold in Europe limiting gas storage
- Warm summer in Asia in 2021
  drove increase air conditioning
  and in turn drew LNG supplies
  from Europe, further increasing
  prices
- Gas storage in EU was lower than normal in winter maintaining upward price pressure
- Russia invade Ukraine in Feb 2022



### Price increases linked to EU addressing gas supply shortages

20 -20 7.5 -40 -60 bcm (Natural Gas) 1.5 3.5 10 -80 16 -100 50 -120 -140 -160 -155 -180 RUIMPOTS Indicit Isurching the second Volumary Reductions omethane dund lea Thermostats Adjustmen Wind and Solar Energy Efficie LNG Oliverisa Price Induced Reg Pipeline Imports

#### EU Measures to meet shortfall in Russian Gas Supply

#### **REPowerEU Plan**

- Accelerate the energy transition – increase energy efficiency and renewable energy supply (14 bcm)
- Increase gas supplies from elsewhere (66 bcm)
- Gas demand reduction (38 bcm)
- Use fuels other than gas in electricity and industry (17 bcm)



#### Changes in natural gas flows into the EU



- Concentrated efforts on LNG imports proving fruitful
- Pipeline imports also increasing from Norway, Algeria and Azerbaijan
- Imports from Algeria now larger than imports from Russia
- Is it enough?



#### These changes are having consequences elsewhere

# Europe's appetite for LNG leaves developing nations starved of gas

Traders look to profit from rush to secure supplies







#### Important to make as much use as possible of EU gas storage

|                |             | TWh           |         |        |
|----------------|-------------|---------------|---------|--------|
|                | operational | under constr. | planned | TOTAL  |
| Austria        | 95,2        |               |         | 95,2   |
| Belgium        | 9,0         |               |         | 9,0    |
| Bulgaria       | 5,8         |               | 4,8     | 10,6   |
| Croatia        | 5,2         |               | 0,3     | 5,5    |
| Czech Republic | 43,1        | 0,8           | 0,4     | 44,4   |
| Denmark        | 10,5        |               |         | 10,5   |
| France         | 132,3       |               | 4,1     | 136,4  |
| Germany        | 260,5       |               | 5,9     | 266,4  |
| Greece         |             |               | 3,9     | 3,9    |
| Hungary        | 69,6        |               |         | 69,6   |
| Ireland        |             |               |         |        |
| Italy          | 195,4       | 8,6           | 40,7    | 244,7  |
| Latvia         | 24,2        |               |         | 24,2   |
| Lithuania      |             |               |         |        |
| Netherlands    | 144,6       |               |         | 144,6  |
| Poland         | 38,4        | 0,7           | 9,0     | 48,1   |
| Portugal       | 3,6         |               |         | 3,6    |
| Romania        | 33,0        |               | 12,5    | 45,5   |
| Slovakia       | 43,4        |               | 3,6     | 47,1   |
| Spain          | 34,2        |               |         | 34,2   |
| Sweden         | 0,1         |               |         | 0,1    |
| EU             | 1148,2      | 11,1          | 85,2    | 1243,5 |
| Belarus        | 15,3        | 5,5           |         | 20,8   |
| Russian Fed.   | 23,8        |               |         | 23,8   |
| Serbia         | 4,5         |               |         | 4,5    |
| Turkey         | 35,0        |               | 43,2    | 78,3   |
| Ukraine        | 327,9       |               |         | 327,9  |
| UK             | 17,5        | 0,4           | 35,3    | 53,2   |
| non EU         | 424,1       | 5,9           | 78,6    | 508,6  |



![](_page_6_Picture_3.jpeg)

#### Target of 80% by end of October met ahead of time

![](_page_7_Figure_1.jpeg)

![](_page_7_Picture_2.jpeg)

#### Using fuels other than gas for electricity is proving challenging however

![](_page_8_Figure_1.jpeg)

## Europe's Nuclear & Hydropower Falter With Droughts

Electricity generated in Europe between Jan-Jul 2022 (in TWh)

![](_page_8_Figure_4.jpeg)

![](_page_8_Picture_5.jpeg)

#### Impact of price rises on energy expenditure as share of disposable income

![](_page_9_Figure_1.jpeg)

- Price increases (Jan 2021 to April 2022) have increased energy expenditure for lowest income quintile by 6% of disposable income
- Energy poverty can be defined as proportion of households spending more than 10% of disposable income on energy
- More recent price increases means likely level of energy poverty increased to 43% of households

| Energy spending >10% of disposable income: | Excluding electricity | Including electricity |
|--------------------------------------------|-----------------------|-----------------------|
| 2015/16                                    | 5.1%                  | 13.2%                 |
| Forecast                                   | 20.5%                 | 43.0%                 |

![](_page_9_Picture_6.jpeg)

#### Impacts also being felt by industry and energy suppliers

![](_page_10_Figure_1.jpeg)

![](_page_10_Figure_2.jpeg)

## $\equiv$ Independent.ie

Subscribe

#### **Personal Finance**

## Fourth energy supplier leaves the Irish market as crisis deepens

![](_page_10_Picture_7.jpeg)

![](_page_10_Picture_8.jpeg)

#### How do we mitigate these price impacts?

- Shelter those who are most affected by these price changes
  - €1,000 to all those in receipt of fuel allowances
  - €600 to all households (could have gone to those most affected)
  - Supports up to €10k per month for businesses
  - Free boiler servicing (5%-10% saving) and accelerated free retrofits
- Demand reduction campaign for those who can reduce demand
  - Public sector
  - Promote retrofitting grant uptake
  - Tap into COVID-19 new definition of achievability
- Accelerate energy efficiency and renewable energy

![](_page_11_Picture_11.jpeg)

#### Recoup excess income from energy companies and use it to compensate

![](_page_12_Figure_1.jpeg)

![](_page_12_Picture_2.jpeg)

![](_page_13_Picture_0.jpeg)

|--|

## Ireland and USA

| Ireland                      |                       |
|------------------------------|-----------------------|
| Population                   | 5 M                   |
| GNI*                         | €231 B<br><b>€46k</b> |
| Electricity                  | 29 TWh                |
| Consumption                  | 5.9 MWh               |
| Peak<br>Demand               | 5.1 GW                |
| CO <sub>2</sub><br>Emissions | 45 Mt<br><u>9t</u>    |
| Installed<br>Capacity        | 12 GW                 |
| Total Fossil<br>Fuels        | 7 GW                  |
| Hydro                        | 0.2 GW                |
| Wind                         | 5 GW                  |

![](_page_14_Figure_2.jpeg)

| US                    |                      |
|-----------------------|----------------------|
| Population            | 330 M                |
| GDP PPP               | €21 ⊤<br><b>€64k</b> |
| Electricity           | 3,930 TWh            |
| Consumption           | 11.9 MWh             |
| Peak<br>Demand        | 790 GW               |
| CO <sub>2</sub>       | 4872 Mt              |
| Emissions             | <u>15t</u>           |
| Installed<br>Capacity | 1,175 GW             |
| Total Fossil<br>Fuels | 736 GW               |
| Hydro                 | 103 GW               |
| Wind<br>Solar         | 209 GW               |

![](_page_14_Figure_4.jpeg)

Value in italics are per person

![](_page_14_Picture_6.jpeg)

#### Contribution of renewable energy to energy supply

![](_page_15_Figure_1.jpeg)

#### SEAI 2021 Energy in Ireland 1990 - 2020. Published by SEAI. Available from here

![](_page_15_Picture_3.jpeg)

#### **Ireland's Electricity System**

![](_page_16_Figure_1.jpeg)

- All-Island single electricity market two jurisdictions, two currencies, and now EU and non-EU
- Single synchronous power system
- Moyle DC inter-connector between NI and Scotland
- East-West Interconnector between Dublin and Wales
- Celtic Interconnector between Cork and France under development
- Significant system and market challenges to integrate large amounts of non-synchronous, variable renewable energy

![](_page_16_Picture_8.jpeg)

## Technical challenges with high non-synchronous variable renewables

Achieving high levels of wind and solar requires sufficient system inertia

To achieve 40% RES-E on average over the year requires us to accommodate 75% VRES-E at times

To get 70% RES-E on average our 2030 target) requires us to accommodate >95% VRES-E at times

We also need an increasing range of system services to support this

|   | Operational Change                        | Expected Delivery |
|---|-------------------------------------------|-------------------|
|   | Implement Enduring OFGS                   | Q4 2019           |
|   | Inertia Floor – 17,500 MWs                | Q1 2020           |
|   | Minimum Units Online – 7                  | Q1 2020           |
|   | Operational Policy                        |                   |
|   | Min Sets Policy (Voltage & Inertia)       | Q2 2019           |
| < | SNSP 75% Policy                           | Q4 2019           |
|   | VDIF Policy                               | Q4 2019           |
|   | Control Centre Tools                      |                   |
|   | Voltage Trajectory Tool                   | Q1 2020           |
|   | System Services                           |                   |
|   | 11 existing services + FFR + DRR + FPFAPR | Q3 2019           |

![](_page_17_Picture_6.jpeg)

#### Increasing System Non-Synchronous (i.e. wind) Penetration

![](_page_18_Figure_1.jpeg)

#### EirGrid 2016 DS3 Programme Operational Capability Outlook 2016. Available here

![](_page_18_Picture_3.jpeg)

## System Non-Synchronous (i.e. wind) Penetration levels April 2022

![](_page_19_Figure_1.jpeg)

SEM Committee 2022 SEM Monthly Monitoring Report April 1 – April 30. Published as SEM-22-043 Available from here

![](_page_19_Picture_3.jpeg)

#### We've been challenged - many aspects of system flexibility are 'behind the scenes'

![](_page_20_Figure_1.jpeg)

early January 2021 were colder across Ireland relative to the same period for the last four years (2017-2020). This increased the demand for electricity until temperatures began to rise from Jan 9th.

![](_page_20_Figure_3.jpeg)

years which affected the availability of wind generated electricity during this period.

Ireland experienced both low winds **and** cold weather in early Jan 2021.

Power system compensated for the low levels of wind with increases in natural gas power.

![](_page_20_Figure_7.jpeg)

Cold weather increased the demand for heating and gas system was also able to provide sufficient increased heating.

Ó Gallachóir B and Deane P 2021 How to ensure we keep the lights on while reducing emissions? Available here

![](_page_20_Picture_10.jpeg)

#### Transitioning to low carbon future requires market changes

![](_page_21_Figure_1.jpeg)

Gaffney, F., Deane J.P. and Ó Gallachóir B.P. 2019 *Reconciling high renewable electricity ambitions with market economics and system operation: Lessons from Ireland's power system.* Energy Strategy Reviews 26 100381. Available here

![](_page_21_Picture_3.jpeg)

## Shortage in adequate generation capacity has been well flagged

![](_page_22_Figure_1.jpeg)

#### EirGrid 2021 All-Island Generation Capacity Statement. Available here

![](_page_22_Picture_3.jpeg)

## We've had auctions for capacity but failed to deliver sufficient back-up

![](_page_23_Figure_1.jpeg)

Offered — Required

Auctions have not always delivered as much as required

Many **awarded** contracts have not delivered

EY 2022 *Performance of the SEM Capacity Remuneration Mechanism.* Report to SEM Committee. Available <u>here</u>

![](_page_23_Picture_6.jpeg)

#### How do we increase electricity supply security?

- Ensure improved availability of existing power plants
  - Reduced O&M during COVID has impacted negatively
- Where can we reduce demand?#
- Penalise electricity use at times of low wind and peak demand
- Secure additional capacity
- Accelerate energy transition

![](_page_24_Picture_7.jpeg)

#### Three challenges coinciding in a perfect storm this winter

![](_page_25_Picture_1.jpeg)

![](_page_25_Picture_2.jpeg)

#### Ireland has divested, banned gas exploration and said No to 'fracked' gas (LNG)

21:21 ୶

ıII \$ ■

2

≡

The New York Times

# Ireland Moves to Divest From Fossil Fuels

A bill passed in the lower house of Parliament was a victory for the global divestment movement.

Give this article

![](_page_26_Picture_9.jpeg)

![](_page_26_Picture_10.jpeg)

By <u>Somini Sengupta</u>

July 12, 2018

Politics

Ban on licences for new oil and gas comes into force following Cabinet decision

![](_page_26_Picture_15.jpeg)

The Cabinet has approved a ban on licences for new oil and natural gas exploration

Kevin O'Sullivan Tue Feb 2 2021 - 20:43

![](_page_26_Picture_18.jpeg)

# Policy Statement on the Importation of Fracked Gas

May 2021

placing of a legal prohibition on the importation of fracked gas in national legislation has been considered and legal advice has been provided ... it is considered that a legal ban on the importation of fracked gas could not be put in place at this time

Prepared by the Department of the Environment, Climate and Communications www.decc.gov.ie

![](_page_26_Picture_23.jpeg)

#### Ireland is 'sheltered' from Russian gas supply disruptions

![](_page_27_Picture_1.jpeg)

![](_page_27_Figure_2.jpeg)

![](_page_27_Picture_3.jpeg)

#### We need to decrease gas usage and also increase security of gas supply

![](_page_28_Figure_1.jpeg)

- On an aggregate annual basis, Ireland will use less gas over the next 10 years (40-50% less by 2030)
- ... but on individual days it will need more especially on days when heating and power demand is high and renewable output is low across IE and NW Europe
- reducing carbon budgets will in essence, 'lock out' long-term use of natural gas (15 years +)

![](_page_28_Picture_5.jpeg)

#### 'Average' use if manageable – 'peak' day gas use is challenging ...

![](_page_29_Figure_1.jpeg)

![](_page_29_Picture_2.jpeg)

#### **Closed conversations are reopening ...**

![](_page_30_Picture_1.jpeg)

- Floating LNG
- Gas storage

![](_page_30_Picture_4.jpeg)

# Winter is coming Can Ireland keep the lights on and homes warm?

Prof. Brian Ó Gallachóir MITEI Visiting Scholar

O)

![](_page_31_Picture_2.jpeg)

energy.mit.edu

@mitenergy

![](_page_31_Picture_5.jpeg)