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Our low-carbon future is mineral
Intensive

Many of the technologies we consider necessary for the
transition to low-carbon energy production rely on
materials
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Rapid deployment of energy transition technologies implies a
significant increase in demand for minerals
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Production of energy transition minerals is more geographically
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Temporal challenges: Time to prospect, plan, fund, permit and
deploy Is 5-15+ years
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Practical limits on energy technology scaling may be impacted by

materials
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CRITICAL MATERIALS
FOR

(ELECTROCHEMICAL) ENERGY
STORAGE




MATERIAL INTENSITY

MATERIAL DEMAND SCALES WITH ENERGY STORAGE CAPACITY
Pumped hydro — water

Thermal =— oil, rocks, molten salt

Electrochemical (batteries) — electrochemically active elements
In cathode, anode, electrolyte,...

FOCUS ON BATTERIES
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SCALE

“As discussed in Chapter 6, the total energy storage capacity that may need to

be deployed to fully decarbonize the US electricity sector might approach
terawatt-hours (TWh) by 2050”

10 achieve near-decarbonization of the US economy by 2050, battery
deployment for both grid-scale storage and electric vehicle applications will

have to scale rapidly to very high levels. Similar efforts overseas will further add
to global demand.

MATERIAL AVAILABILITY IS SENSITIVE TO GLOBAL AND EV DEMAND

MUST CONSIDER[100°'S TO 1000°S|OF TWH DEMAND FOR ELECTRO-

CHEMICAL STORAGE
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PRESENTLY DOMINANT
TECHNOLOGIES

Lithium-ion batteries Redox flow batteries
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Positive "

electrolyte

Materials of concern Material of concern cadneaiy
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INi:Mn:Co]

CRUDE FIRST LOOK

* Years of current production for 100 TWh of Li-ion batteries

Composition Li [y/(100 TWh)] Co [y/(100 TWh)] Ni [y/(100 TWh)]
(1111 [wiDESPREAD NOW]| 167 281 15.7
(622 APPEARING 152 153 25.6
[811] 133 67 30.0

% 395 Years of current production for 100 TWh of vanadium RFB
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FINDINGS IN ANUTSHELL

“Rapid deployment of batteries in the United States and abroad, primarily in electric
vehicles and secondarily for grid-scale energy storage, will require increased production
of certain critical battery elements at rates that far exceed historical averages.
Constraints on scaling the production of these critical elements already exist and will
likely persist, which will have implications for technology development pathways.”
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Lithium CAGR for Li-NMC deployment through 2050
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Nickel CAGR for Li-NMC deployment through 2050
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FINDINGS IN MORE DETAIL

At the higher ends of deployment rate considered in this report, the required rate of increase of
production of critical elements such as Co, Ni, Li, and V equals or exceeds historical rates of growth. This
implies the expansion of extraction, beneficiation, and refinement facilities beyond current infrastructure.

Producers should consider the use of appropriate technology for a given application. Since space and
weight constraints are of greater importance in mobile applications, high energy density technologies, such
as Li-NMC, may be more necessary for these applications to achieve rapid scaling required. This is in
contrast to lower energy density chemistries, such as LFP, lead-acid, and metal-air batteries, which could
play a greater role in stationary battery energy storage.

We recommend research and development on battery technologies that make use of earth abundant
materials. Note that neither weight, nor round trip efficiency is as great a constraint on stationary storage as
it is on mobile (EV) energy storage.

Given the significant scaling required, it is necessary to more effectively manage resource extraction for
energy storage including the environmental and social implications of mining and beneficiation.




COMMENTS ON LITHIUM

Most optimistic among Li, Ni, Co, V

+ Already more than 70% directed toward batteries

+ Production had grown rapidly in recent years

+  Promising extraction directly from brine without
evaporation

+ Brine, clay, pegmatite

—  But still required in some “earth abundant”
battery technologies: e.g. LiFePQO4
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COMMENTS ON COBALT

lllustrative of risks associate with critical elements
—  Production highly concentrated (~70% in DRC)

—  Processing highly concentrated (~70% in China)

. Considerable artisanal mining

—  Social and political consequences of extraction

—  By/Co-product economics (Cu, Ni) = inelastic -
supply in response to demand j

~  Anticipated shift from coproduction with Cu to Ni as
well as secondary recovery require investment and
may cause supply disruptions
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COMMENTS ON NICKEL

Most mature technology & supply chains

—  Challenging historical CAGR
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—  Most produced via ferronickel, but only nickel
sulfate is suitable for battery use
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+  Coproduction with cobalt may
Improve economics
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COMMENTS ON VANADIUM
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Over the next decade, managing end-of-life batteries through
recycling will become a requirement
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Over the next decade, managing end-of-life batteries through
recycling will become a requirement
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Recycling will not contribute significantly to meeting material
supply now for exponentially growing deployment trajectory
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However, after the next decade,
managing end-of-life batteries
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through recycling will quickly
become a requirement
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Energy transition minerals may involve higher environmental
Impacts and emissions intensities

Technology kgCO2-eq/
kg Ni

Today’s technology 5-10
for Ni extraction

Emerging tech 1 20-30
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Summary thoughts

*Materials demand will grow to meet decarbonization needs
*The challenges across materials are not monolithic
*Physical scarcity will not be a major concern but rather...
*Temporal and contextual issues dominate
*Technology evolution makes it difficult to plan
*Mining operation time lags and limited expansion rates
*Recycling only becomes viable supply as demand declines
*These materials have significant environmental impacts and social conflicts
*Mineral trade and geopolitics are very unstable
*By-production constraints pose a big risk
*Materials efficiency has a role, let’s be specific about what that role can be
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