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Five thermal energy grand challenges for

decarbonization

Roughly 90% of the world's energy use today involves generation or manipulation of heat over a wide range of
temperatures. Here, we note five key applications of research in thermal energy that could help make significant
progress towards mitigating climate change at the necessary scale and urgency.

Asegun Henry, Ravi Prasher and Arun Majumdar

Thermal storage systems
As solar and wind electricity pepg#
Mo ntermiteg f
need for Tow=cost storage over a wide range
of time scales, from seconds to days, and
even seasonal storage. Current technologies,
such as pumped hydroelectricity, are
geographically limited and lith i
batteries (~US$80-100 kWh ' capital
cost) are too expensive for the multi-day
storage targets (~US$3-30 kWh'') needed
to fully decarbonize the grid', Solving this
problem could enable full decarbonization
of the grid, thereby reducing global GHG
emissions by ~25%", Thus, the storage
problem is one of the single most impactful
problems to be solved.
Several new thermal energy storage
) concepts have been proposed™, While
it is relatively easy to convert electricity to
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€V 10r paueries ). INOneIneless, since ne
specific heat of virtually all materials is the
same on a molar basis, at high temperatures,
TES can make use of extremely abundant
and low-cost materials that are impure or
even recycled.

Although several embodiments of TES
have been put forth, they are still early
stage and have not yet reached commercial
deployment, Thus, there is a need to
continue developing more competing
embodiments that exploit other thermal
storage materials and mechanisms, In
particular, it is of utmost importance to
develop full-system concepts that carefully
consider all of the practical issues (for
example, materials degradation and
compatibility over time, safety, system
integration, transients and so on) that might
stifle or prevent commercial deployment.
For example, systems that utilize a liquid

| (M) Chech for updates

11S Net energy CoNsUMpUIon, by enabing
time-shifted matching of internal thermal
demand with the diurnal temperature
swings of the external natural environment.
Second, TES has the ability to make use of
inexpensive renewable electricity during
its peak production (often oversupply), by
storing it in the form most conducive to its
final usage — namely as thermal energy for
space heating/cooling, instead of electricity.

One fundamental challenge in TES
adoption is that there is limited tunability
in the usage temperature, For example, if
the required temperature is 25 °C and the
ambient temperature swings above and
below 25°C, two different TES materials
and systems are needed, which dramatically
reduces the utilization of each system,
leading to a higher cost.

Since the levelized cost of storage (LCOS)
is inversely proportional to its utilization
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Energy storage is the key to decarbonizing
electricity and fransportation

More details in my recent paper:
A. Henry, R. Prasher, A. Majumdar, Nat Energy 5, 635-637 (2020)
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Electricity - Heat (storage) - Electricity

Electricity in )

Electricity out
Like a battery

System with
thermal storage
and conversion



Electricity - Heat (storage) - Electricity

Why would anyone & /f
ever do thise A T4
Storing heat can be |77 <
10-100X cheaper than g A"
storing electricity! B4

System with
thermal storage

Can be 100% efficient and conversion I

going from lowerto |

Can never be 100%
. efficient going from
higher entropy ! : higher to lower entropy



Low concentration of active species 100% concentration of active species

Large energy per active atom Low energy per active atom
Special, pure, organized materials Disordered, simple scrap material
Impurities and byproducts are bad Impurity tolerant
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Liquid silicon storage

Cp =950 Jkg' K" Cp = 444 J kg K
Cost = $1.5/kg Cost = 3$0.11/kg
AT = 500°C AT = 500°C
Cost/Energy = $1.5/kg + (Cp*AT) = Cost/Energy = $0.11/kg + (Cp*AT) =
$11.4/kWh-t $1.8/kWh-t
At 50% efficiency At 50% efficiency
Cost/Energy = $11.4/kWh + 0.5 = Cost/Energy = $1.8/kWh + 0.5 =

$22.8/kWh-e $3.6/kWh-e



Volume to surface area ratio
1= m*Cp*R = p*V*Cp*L/kA
For tanks of order 10 m
Tt on the order of months
Lose < 1% of energy stored
per day




What about corrosion?
The hotter the faster/worsel

Simelts at 1414°C
Fe melts at 1538°C

Molten metal dissolves metal
Like
Sugar water dissolves sugar

1 2 3 4 5 6 - 8 9 10 11 12 13 14 15 16 17 18

:ZQ . Other nonmetals . Halogens Cerq miCS!

Alkali metals Transition metals

 Alkaline earth metals . Post-transition metals

. Lanthanoids

For elements with no stable isotopes, the mass ber of the i with the | ‘e is in parentheses.

Key New |dea = Liquid Metal + Ceramics




Electricity > Heat > Electricity Water Cooled MPV
with Integrated Mirror
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Electricity From
Any Source
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C. Amy et al., Nature 550, 199-203 (2017)



e Turbine

Doesn’t currently exist

Large barrier to new turbine deployment
> $100M of R&D

New materials + New HXs

Min-Hour response time to full load

* MPV

Much lower barrier to deployment
Lower cost < $0.5/W-e

Similar efficiency (50-55%)

Fast response time (seconds)
Fundamentally new cost/learning curve
Lower maintenance

)
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Turbomachinery

VS.
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Black Body

Power (W/m3)

- Tungsten has low emissivity in the IR
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qungsten = 689 kW/m?

Qqbove 8 = 213 kW/m?
Qbelow_BG =476 kW/mQ

- BSR

Reflected - 2
Light Qgen = 89.4 kW/m

-ﬁ_ QbelowaG = 18'7 kw/m2

Incident Light  Absorbed Light

Efficiency = Power,; + Qtotal =
123+ (123 + 89.4 + 18.7 + 4.6) = 52%

« <1%loss in electronics for heater
« ~1%/day loss in heat leakage
« <1%loss in parasitic load

« ~ 50% roundtrip efficiency (RTE)

C. Amy et al.,, Energy & Environmental
Science, 12, 334 (2019)



Cost = CPE*time + CPP

Cost per unit energy = CPE
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* ARPA-E Project
Build a prototype
Pumping

2500°C Heaters
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High current density
High reflectivity (> 98%)
High efficiency(> 50%)
Long term testing




All Gases Gas + Solid Products
CH4 + HQO —> CO + 3H2

CH4 —> C + 2H2
CO +H,0— CO, + H,
\ J \
| |
Steam Methane Reforming (SMR) Direct Thermal Pyrolysis
+
Water-Gas Shift (WGS)

—{ —
CH, H,

The plugging problem™



» Lower cost H, $0.5-1.50/kg « Produces carbon black + We now know how to make it
* No CO, emissions » No corrosion — No pluggmgl + We know how to pump Sn(l)

CH, — C(s)

Carbon Black (CB) TR

Protrusions create eddies
to prevent CB contact

TURRRRREELRELTY
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Wetzel's Group
at KIT in Germany

TS

wq | Tin Solves the
Plugging Problem

[mmy}

H4.1 T4l 5
W mi(cm_
M. Plevan et al. Int. J Hydrogen
Energy, 40, 25, 8020-8033 (2015)

The PI's Group - C. Amy et al., Nature, 550,199-203 (2017)
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For T < 500°C For T > 500°C
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COMSOL Modelling

Guided Experimental Design

Temperature
(Kelvin)

2000K

1 1600K

1 1200K

800K

400K

Detailed reactor modeling:

Predict profiles of temperature,
species concentration and
bubble size density in reactor
PDAEs in time, vertical position &
bubble size coordinate

Software: Jacobian (equation-
based modeling system) &
DAEPACK (numerical engine)
Incorporate detailed reaction
kinetics models for methane
pyrolysis via, e.g., CHEMKIN
Optimization-based experimental
design with reactor model for
model discrimination and
parameter estimation

Cycle of design, experiments,
validation 22
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Liquid Droplet Full System Model for Performance Yu Qiao (UCSD)
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SiC vs. Graphite Reactor?
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Five thermal energy grand challenges for

decarbonization

Roughly 90% of the world's energy use today involves generation or manipulation of heat over a wide range of
temperatures. Here, we note five key applications of research in thermal energy that could help make significant

M) Check for updates

progress towards mitigating climate change at the necessary scale and urgency.

Asegun Henry, Ravi Prasher and Arun Majumdar

Thermal storage systems
As solar and wind electricity penetration has
increased, its intermittency has hastened the
need for low-cost storage over a wide range
of time scales, from seconds to days, and
even seasonal storage, Current technologies,
such as pumped hydroelectricity, are
geographically limited and lithium-ion
batteries (~US$80-100 kWh-' capital
cost) are too expensive for the multi-day
storage targets (~US$3-30 kWh ') needed
1o fully decarbonize the grid*, Solving this
problem could enable full decarbonization
of the grid, thereby reducing global GHG
emissions by ~25%", Thus, the storage
problem is one of the single most impactful
problems to be solved.

Several new thermal energy storage

(TES) concepts have been proposed™, While
it is relatively easy to convert electricity to
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€V 10T Dateries). NONEINeless, since ne
specific heat of virtually all mate: is the

e of extremely abundant
and low-cost materials that are impure or
even recycled.

Although several embodiments of TES
have been put forth, they are still early
stage and have not yet reached commercial
deployment, Thus, there is a need to
continue developing more competing
embodiments that exploit other thermal
storage materials and mechanisms. In
particular, it is of utmost importance to
develop full-system concepts that carefully
consider all of the practical issues (for
example, materials degradation and
compatibility over time, s Y
integration, transients and so on) that might
stifle or prevent commercial deployment.
For example, systems that utilize a liquid

on a molar basis, at high temperatures,

118 Net energy CoNSUmMpuion, by enaning
time-shifted matching of internal thermal
demand with the diurnal temperature
( the external natural environment.

y to make use of
ve renewable electricity during
its peak production (often oversupply), by
storing it in the form most conducive to its
final usage — namely as thermal energy for
space heating/cooling, instead of electricity.

One fundamental challenge in TES
adoption is that there is limited tunability
in the usage temperature, For example, if
the required temperature is 25 °C and the
ambient temperature swings above and
below 25°C, two different TES materials
and systems are needed, which dramatically
reduces the utilization of each system,
leading to a higher cost,
nce the levelized cost of storage (LCOS)
is inversely proportional to its utilization
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P. Denholm, R. Margolis, Energy Policy, 35, 2852-2861 (2007) |. Gur et al. Science, 435, 1454 (2012)
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Global CO2 emissions ~ 37 GtCO,-eq - HFCs could become 10-25% of the problem!
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Electricity: 25% Transportation: 14% Industry: 15% > Cement: 5% Steel: 4% Aluminum: 1% Hydrogen: 1%
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amSmelting and Metal Melting
Metal Heat Treating and Reheating
a=Drying
e’ |uid Heating
e\ on-Metal Melting
e=Calcining
e oking
e uring and Forming
a=Other

Future Opportunities

1. Increase thermal efficiency of
current processes

2. Zonal heating (e.g., electrical
induction)

3. New redox processes
Electrochemically
Chemically (e.g., Hy)
Thermally
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Space heating and cooling ~ 13% of US energy usage
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T. Hoyt et al., Building and Environment, doi:10.1016/j.buildenv.2014.09.010
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building energy goes to heating at < 60°C Residential
~ 60% for residential
~ 32% for commercial
Estimated U.S. Energy Use in 2011: ~97.3 Quads |‘ hﬂa\ggg??_;_ti)\g?gtr:;;e
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CHANGING WHAT’'S POSSIBLE
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