Policy Options to Promote Electric Vehicles:

Evidence from China

Shanjun Li

Cornell University

Preliminary (Please do not cite without permission)

MIT Energy Initiative December 11, 2019

2 EV Policies and Impacts on Sales

3 Firm Responses to Purchase Subsidies

A Bit of History

Figure: First Production EV in 1884

Source: https://www.energy.gov/timeline/timeline-history-electric-car

A Bit of History

- EVs had advantages over their early-1900s competitors. They did not have the vibration, smell, and noise associated with gasoline cars. They also did not require gear changes and a manual effort to start.
- By the turn of the 20th century, EVs accounted for 38% of the automobiles, stream 40%, and gasoline 22%. Over 30k EV registered
- EVs lost to gasoline cars in 1910's due to a confluence of factors:
 - Improved road infrastructure and long-distance travel;
 - Ocheap gasoline from worldwide oil discoveries;
 - Solution Technology improvement such as muffler, and electric starter;
 - Ford's Model T

Revenge of EVs

- From 1996-1998, GM introduced over 1,000 BEVs (EV1) in California, mostly made available through leases. In 2003, GM crushed their EVs upon the expiration of the leases
- Who killed the electric car? documentary by Chris Paine
 - Oil industry fears of losing monopoly on transportation fuel
 - Auto companies fears of development cost and long term profit
 - Federal government joined the auto-industry suit against California in 2002
 - CARB drastically scaled back the ZEV mandate in 2003
 - Lack of consumer interest (cheap oil, demand for SUV)
- Mass-produced Nissan Leaf (BEV) and Chevy Volt (PHEV) were introduced in Dec. 2010

Global Electric Vehicle Market: Sales

Note: New EV sales (BEV and PHEV) by country and region. Source: IEA, AECA.

Global Electric Vehicle Market: Infrastructure

No. of EV Firms and Models

No. of EV firms and models (BEV, PHEV); imported sales included (in thousands)

Top 5 EV Firms in China and US

Note: Top 5 EV firms in China and US

IEA's EV Roadmap to 2050

China's EV and Fuel Economy Targets

- High price: 2019 Nissan Leaf starts at \$30k and Toyota Prius Prime at \$28k while gasoline counterparts (Nissan Sentra, Honda Civic, Toyota Corolla) at \$18-20k
- Pange anxiety: most EV models are still less than 150 miles. Gasoline cars can travel more than 300 miles before refueling
- Lack of charging infrastructure: 20k charging locations in 2019, compared to 120,000 gasoline stations in the US
- Long charging time: Nissan Leaf 35h at 110V, 8 to 11h at 220V, 50 min at 440V

2 EV Policies and Impacts on Sales

3 Firm Responses to Purchase Subsidies

- Are there market failures that warrant government intervention?
 - Suboptimal tax on gasoline: air pollution, carbon, noise
 - Onsumer mis-perception of future fuel costs: energy paradox (consumer not taking up cost-effective investment)
 - Technology and consumption spillovers: EV producers cannot appropriate all the benefit from investment

EV Policies in China and US

Policies with Financial Incentives

	Federal	Local
China	Subsidy based on driving range 2010: 10 pilot cities 2013: 88 pilot cities 2016: nationwide subsidy	Matched with central subsidy by 1:1 to 1:0.5 ratio Shared by provincial and city governments Total subsidy no more than 50% to 70% of MSRP
United States	Subsidy based on battery capacity From 2010: \$2500 for 4kWh battery, with an additional \$417 per kWh up to \$7500 200k qualifying vehicles per automaker	Rebates: CA, IL, MA, NY, PA, TX Tax credit: CO, GA, LA, MD, SC, UT, WV Sales tax exemption or reduction: CO, NJ, WA Fee exemptions or reduced fee: AZ, IL

Common Non-Financial incentives:

- Free registration, exemption from license lottery
- Access to HOV lanes or restricted traffic zones subject to emission requirements
- Free municipal parking
- Increase public charging stations, modify building code

Central Subsidies in China from 2013 to 2018

Туре	Range	2013	2014	2015	2016	2017	2018
	\geq 80km	¥35,000	¥33,250	¥31,500	-	-	-
	\geq 100km				¥25,000	¥20,000	-
	\geq 150km	¥50,000	¥47,500	¥45,000	¥45,000	¥36,000	¥15,000
BEV	\geq 200km						¥24,000
	\geq 250km	¥60,000	¥57,000	¥54,000	¥55,000	¥44,000	¥34,000
	\geq 300km						¥45,000
	\geq 400km						¥50,000
PHEV	\geq 50km	¥35,000	¥33,250	¥31,500	¥30,000	¥24,000	¥22,000

Local Policies in China

• Monetary Incentives: reduce ownership and operating cost

- Vehicle purchase subsidy for BEV and PHEV, proportional to central subsidy. Total subsidy no more than 50% to 70% of MSRP
- Vehicle tax exemption, parking fee reduction, license plate fee wavier
- Charging fee subsidy
- Non-monetary Incentives
 - Preferential treatment on EVs under purchase quota systems: Shanghai, Beijing, Guangzhou, Tianjin, Hangzhou, and Shenzhen
 - Road access privilege many cities with driving restriction: Beijing, Changsha, Lanzhou, Wuhan, Nanchang, and Chengdu
 - Expand charging infrastructure and dedicated parking space for EV
 - Green plate: roll out in three waves from 2016

Policy Changes in 2018 and 2019

- Starting from 2018, the subsidy is adjusted base on two additional requirements
 - Minimum energy efficiency in kWh/100km (as a function of weight)
 - Battery energy density \geq 105 Wh/kg
- Starting from 2019:
 - Local subsidies removed
 - Minimum range for subsidy is increased to 250 km
 - Maximum subsidy cut in half to 25k
 - ▶ NEV credit mandate: the credit per EV gets is a function of range and energy efficiency. The total credits from an automaker need to reach 10% of total sales in 2019 and 12% in 2020

Effectiveness of Policies on Sales

• Question: what is the impact of different policies on sales of electric vehicles?

- Data
 - EV sales by city by model by quarter during 2015-2018. 171 models (all the EV models)
 - Comprehensive local policies in 40 cities . Focus on top 40 cities with largest EV sales
- Method: Panel regression. Relies on spatial and temporal variation in policies and sales

Local Subsidies by City (in \$10,000)

EV Green Plate Policy in China

EV Sales by City in 2008

Regression Results

Variables	Dependent Var.: Log(Sales)			
Average Price (in ¥10k)	-0.054*** (0.014)	-0.053*** (0.014)		
Central Subsidy (in ¥10k)	0.135*** (0.038)			
Local Subsidy (in $¥10k$)	0.156*** (0.036)			
Total Subsidy (in ¥10k)		0.146*** (0.025)		
Plate Restriction	0.648*** (0.087)	0.650*** (0.089)		
Driving Restriction	0.211* (0.107)	0.215** (0.106)		
Green Plate	0.112 (0.067)	0.113* (0.066)		
Year-Quarter fixed effect	Yes	Yes		
City-Model fixed effect	Yes	Yes		
Observations	15,654	15,654		
R-squared	0.719	0.719		

Findings

- \bullet A \$10,000 increase in price would lead to a 5% decrease in car sales
- Consumers respond to central subsidy and local subsidy similarly
- Consumers respond more strongly to subsidies than price (almost 3 times)
- $\bullet\,$ Purchase restriction on gasoline vehicles \approx ¥43,000 EV subsidy
- \bullet Driving restriction on gasoline vehicles \approx $\$14{,}300$ EV subsidy
- Green plate policy \approx ¥7,500 subsidy

Policy Impacts on EV Sales

2 EV Policies and Impacts on Sales

Bunching at the Cutoffs

EV Size in China and US

Battery Technology

Market Equilibrium Model of EVs

- A market equilibrium framework to analyze consumer and firm behavior in respond to shocks/policies
 - Demand side: consumers decide whether and which EV to buy based on choices available and preferences
 - * Model premises: consumer preferences for attributes
 - Supply side: firms choose vehicle attributes to maximize profit subject to the subsidy policy
 - * Model premises: Marginal cost of production, fixed cost of attribute changing, technology frontier
- Bring the model predictions to observed data (aggregate sales, household survey on who buys what) to estimate model premises
- Simulate market outcomes (EV model attributes, sales) under counterfactual scenarios

Demand Side: Utility Maximization

• The utility of consumer i from vehicle j in market m:

$$u_{ijm} = [\alpha_1 + \alpha_2 ln(Y_{im})]\tilde{P}_{jm} + X_{jm}\beta_i + \xi_{jm} + \varepsilon_{ijm}$$

- Y_{im} : Household income
- \tilde{P}_{jm} : consumer price ($\tilde{P}_{jm} = P_j \text{subsidy}_{jm}$)
- X_{jm} : observed market and vehicle characteristics
- ξ_{jm} : unobserved vehicle characteristics
- ε_{ijm} : idiosyncratic preference shock (i.i.d. type I extreme value)

Estimates of Preference Parameters

Linear Parameters	Coef.	S.E.	Coef.	S.E.	
Price Coefficients					
Price	-0.109	0.002			
α_1			-0.707	0.046	
α_2			0.185	0.012	
Horse power	0.030	0.001	0.035	0.000	
Weight (100kg)	0.075	0.004	0.121	0.004	
Fuel cost	-0.845	0.084	-0.465	0.089	
EV	-4.051	1.309	-1.608	0.105	
Driving range (km)	0.005	0.001	0.010	0.001	
Auto Transmission	0.532	0.011	0.716	0.011	
Purchase restriction*EV	3.209	0.428	1.840	0.090	
Driving restriction*EV	1.823	0.320	0.858	0.137	
Dispersion Parameters					
Constant, σ_1			-2.652	0.249	
Weight (100kg), σ_2			0.051	0.006	

Quarter, city-year, vehicle segment, firm fixed effects are included

Supply Side: Profit Maximization

 We allow firms to choose vehicle attributes (weight and battery capacity) as well as compete in price

$$\max_{(P_j,k_j,w_j)_{j\in J_f}} \prod_f = \sum_{j\in J_f} (\tilde{P}_j + s \cdot 1_{\{D_j \ge \underline{D}\}} - mc_j) q_j - \sum_{j\in J_f} FC_j$$

- k_j and w_j affect driving range D_j(k_j, w_j), marginal cost mc_j(k_j, w_j), fixed cost FC_j(k_j, w_j), and the demand q_j(p, k, w)
- For instance, an increase in k_j causes
 - (+) longer $D_j \Rightarrow$, which increases demand q_j
 - (-) higher mc_j and FC_j
 - (-) business stealing effect
- When benefits and costs from changing k_j or w_j are marginally balanced, $D_j(k_j^*, w_j^*) \neq \underline{D}$ [interior solution]

Specification of Supply Side Functions

Driving Range: $D_j = h(k_j, w_j) + \kappa_j = \eta_k k_j + \eta_w w_j + \kappa_j$

Marginal Cost: $\frac{\partial mc_j}{\partial k_j} = \gamma_k + \zeta_j^k$ and $\frac{\partial mc_j}{\partial w_j} = \gamma_w + \zeta_j^w$

• γ_k and γ_w are common components across different models • ζ_i^k and ζ_i^k are model specific variations

Fixed Cost: $FC(k_j, w_j) = \frac{\phi_k}{2}k_j^2 + \frac{\phi_w}{2}(w_j - w_j^{natual})^2$

- $w_i^{natural}$ is the natural level of a vehicle weight
- Parameterize $w_j^{natural}$ with exogenous attributes $w_j^{natural} = Z_j \rho$

Supply Side: FOC

First Order Conditions

$$q + \Omega \otimes \Delta_P(P - mc) = 0$$

$$-(\gamma_k + \zeta_j^k)q + \Omega \otimes \Delta_k(P - mc) + \eta_w \Lambda = \phi_k k_j$$

$$\frac{\partial mc}{\partial k}$$

$$-(\gamma_w + \zeta_j^w)q + \Omega \otimes \Delta_w(P - mc) + \eta_w \Lambda = \phi_w(w_j - W_j\rho)$$

$$\frac{\partial mc}{\partial w}$$

- Ω : ownership matrix
- Δ_x : derivatives of market shares with respect to x = P, k, or w

•
$$\Lambda = (\lambda_1, ..., \lambda_J)$$
 where $\lambda_j \ge 0$

Supply Side: FOC

 At cutoffs D_j(k^{*}_j, w^{*}_j) = <u>D</u>, marginal benefits and costs from changing k_j or w_j may not be equal [corner solution]

$$rac{\partial \Pi_f}{\partial k_j} \leq 0 \;\; ext{ and } \;\; rac{\partial \Pi_f}{\partial w_j} \geq 0$$

- A firm would have likely reduced k_j or increased w_j in the absence of the subsidy. But do not in order to get the subsidy
- The wedge in the F.O.C. captures the shadow price λ_j of relaxing the policy threshold \underline{D}

$$\frac{\partial \Pi_f}{\partial k_j} + \lambda_j \ \frac{\partial D_j}{\partial k_j} = 0 \ \text{ and } \ \frac{\partial \Pi_f}{\partial w_j} + \lambda_j \ \frac{\partial D_j}{\partial w_j} = 0$$

Estimates of Cost Parameters

- Marginal Cost of production in 2015:
 - ▶ MC \Uparrow by \$350 for 1kWh \Uparrow in battery capacity
 - MC \Uparrow by \$50 for 10kg \Uparrow in vehicle weight
- Fixed cost of attribute adjustment:
 - $FC_j(k_j, w_j) = C + 1100 \cdot k_j^2 + 2500 \cdot (w_j w_j^{natural})^2$
 - ► 10kg deviation from natural weight incurs annual fixed cost ↑ by \$2,500 while 20kg deviation incurs \$10,000 additionally
- Shadow price of subsidy constraint:
 - Firms are willing to pay on average \$18,560 and at most \$57,030 to relax <u>D</u> by 1km for a model at the threshold, <u>D</u>
 - The shadow price λ_j is higher for the more profitable model

Battery Cost from the Literature

Simulations (Preliminary): Remove Range Requirement

- Keep constant the total subsidy to the EV buyers, but remove the link to vehicle range
- Simulate one firm at a time: holding fix the decisions of other firms

Range group	Range (km)		Weight (10kg)		Capacity (kWh)		Price (¥10k)	
	W/	W/O	W/	W/O	W/	W/O	W/	W/O
$150 \leq D < 160$	155.0	124.1	81.0	84.8	15.5	10.3	11.2	10.7
$250 \leq D < 260$	252.0	131.5	127.2	188.5	31.7	14.3	19.9	23.4

• Removing the range constraint leads to larger EVs, with smaller batteries

Comparing WTP and MC for EVs

• Does the subsidies lead to privately and socially undesirable products?

	Count	Sales	Subsidy	Price	МС	WTP	Footprint	Weight
			(¥10k)	(¥10k)	(¥10k)	(¥10k)	(m^2)	(100kg)
WTP - MC \leq 0	8	3125.75	8.43	7.46	11.29	8.66	5.47	7.39
0< WTP - MC \leq 10	14	2594.86	8.04	6.95	10.01	14.68	5.56	8.51
$10 < WTP$ - $MC \leq 20$	8	1761.75	8.57	10.73	12.98	26.63	6.14	9.13
WTP - $MC > 20$	13	1770.77	8.38	12.48	13.64	48.26	6.96	10.61

BEVs with WTP < MC

(a) Dongfeng DFM E30L

(b) Zotye Zhidou301

(c) Kandi Panda K11

(d) Qingnian Maidi i3

Concluding Thoughts

- China has become by far world's largest EV market. Government policies played a big role in promoting the technology.
 - ► The policies combined account for 70% sales in 2018 (58% from subsidies). Similar impacts were found for US and Norway as well.
- Subsidy based on driving range led to unintended consequences
 - Firms receive subsidies through downsizing vehicles rather than investing in battery
 - Subsidies led to (likely) socially undesirable vehicles being produced
- Questions to be answered:
 - Could China's market sustain its growth without large subsidies?
 - What are the environmental impacts of EVs?
 - With nearly 100 EV producers, is there misallocation of resources?