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Towards meeting the dual challenges of increasing energy supply while reducing GHG emissions, the
need to understand the suite of available technology pathways and how they integrate into the energy
system has become critical

|s there a role for natural gas? What is the best strategy to decarbonize industry?

What is the impact of reduced methane leakages? How to account for geologic/regional differences?

How much energy storage is needed for a reliable power grid? Batteries or other technologies?
Cost of carbon? How far can electrification go towards decarbonization? H, for hard to electrify sectors?
Demand side response? What does the energy system need for deep decarbonization?

Can algae biofuel be a viable liquid fuel? What does the energy system need for deep decarbonization?

Emission reduction vs cost? Do we need negative emission technologies?
Infrastructure requirement for different scenarios? Carbon capture and sequestration: friend or foe?
M IT é:f? How can we make existing assets more efficient? |I|I-



Pressing need to capture the changing dynamics of energy transition in evaluating plausible energy
futures, pathways and options considering environmental and economic elements
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We have developed SESAME to understand the impact of all relevant technological, operational,
temporal and geospatial variables to the evolving energy system

— Exploration of system level interactions
— Cross sector comparisons
SESAME Sustainable Energy System Analysis Modelling Environment beta v1

Patway oy System s Urcetatey o | A icg — Representing market dynamics, technology
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— Incorporation of bespoke process simulation
capabilities for in-depth analysis
— Investigation of intra- and inter- pathway trade-offs

— Assessment of impacts arising from standard vs.
best practices

— Quantification of geographical dependencies
— Pathway-level and systems-level analysis
— Integration of high-resolution data

EM-Phase 1: LCA of mature technologies
EM-Phase 2: TEA of mature technologies
EM-Phase 3: LCA & TEA of emerging technologies
IEA-GOT: Beyond GHG and region expansion
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The modular structure of our platform allows the analysis of a very large number of conventional and
novel pathways — More than 1000 energy pathways are embedded in the framework capturing ~90% of
energy-related emissions
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Modeling environment of SESAME allows integration of other tools and models to include state-of-
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By executing the analysis using a modular framework we can establish a basis for the accurate
assessment of the life cycle implications arising from complex system-level restructuring
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Example Analysis 1: Electric Power System
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Solar generation in CAISO grew by 14 percentage points (from 3 to 17 percent of total generation) between
2013 and 2018 — What are the consequences and implications of this expansion for existing dispatchable
generation?

CAISO Generation by Source
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Exploring dynamic power system responses to expanding renewable generation — Using high-
resolution data to draw conclusions based on natural gas unit operation
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Observed trends in system-wide operating events — An increase in solar generation shifts the net load curve
drastically, we examine the generation side of this outcome.

Average Start and Stop Events
Per day, by hour
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Changes in residual load alter unit firing and cycling duration — Trends in CC and GT unit operating behavior
indicate shifts in unit start and stop times as well as shorter CC cycling periods.

Example Unit Emissions Intensities by Unit Loading

Sample CC CO2 Emissions Intensity
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Analysis of start and stop events indicates:

Increased number of starts for both CC and GT units
Shift in timing of start events (especially for CC)
Emergence of morning start/stop routine

Shorter cycling durations for CC units




Emission consequences of operation at part-load levels — Dynamic operation alters total CO, emissions and
the ratio of emissions during these part-load periods.

Aggregate Emitted CO, by Operation Status

Hourly analysis
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— CO, patterns follow gross generation trends

— Ratio of CO, from start-ups to CO, from operation increases over time

— Findings highlight the importance of understanding system-level operation
trends with unit-level data

Source: EPA CEMS and MITEI analysis
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The hourly variation of emission intensity of natural gas power generation units in California
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Other implications for available technology pathways?
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Natural gas fleet currently provides balancing capacity but to meet decarbonization targets continued
use requires deployment of CCS — Low capacity factor and operational variations will be challenging with

Geographic Distribution of CAISO
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Example Analysis 2: Transportation
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GHG Emissions for Vehicles with Different Powertrains from MoF Study
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BEV emissions per mile are about 55% of comparable ICEVs.

HEV, PHEV and FCEVs emissions are all similar and fall between ICEV and BEV emissions.
BEV emissions are based on the average carbon-intensity of U.S. electricity

FCEV emissions are based on hydrogen from steam methane reforming
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emissions per distance (gCO.,e / mi)
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FCEV GHGs with Hydrogen via Different Methods

1. Electrolysis w/ wind is cleanest.

2. Compared to SMR, electrolysis w
avg grid does not have carbon
benefits for FCEVs, even with ~50%
drop in grid carbon from 2018 to
2050.

3. Adding carbon capture to SMR

reduces FCEV emissions to similar
level as BEVs.
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BEV / HEV GHG Emissions Ratio Across United States
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A key focus for SESAME as a systems-level technology assessment tool is to provide insights on the
feasibility, scalability, and emission reduction potential of various technology pathways as the energy
system restructures
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Key takeaways

SESAME

- Understanding the evolving energy system requires new
analytical methods and tools that allow exploration of system
level interactions and perform cross sectoral comparisons.

- Impacts arising from standard vs. best practices can have a
significant impact such as in California’s natural gas fleet. Multi- .
level analysis with integrated process simulation capabilities SN SR R SR e
can accurately predict these behaviors. e ———

— The shift in energy system from isolated to integrated and from
centralized to distributed is hard to characterize. High temporal
and geospatial resolution is a must for any accurate analysis.
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