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This is a semi-supervised problem
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for Na-ion batteries

1. Introduction

MNa-intercalation batteries are appearing as an important altemative
to Liintercalation systems, and rapid progress has been made on devel-
oping high capacity cathode materials [1]. It has become clear that the
Na analogues of the successful layered LiMO; electrodes behave very
differently from their Li equivalents [2]. The large difference in
ionic radius between Li and Na provides a stronger tendency for
the Na compounds to form in the layered structure [3-7], and lay-
ered Na,MO; (M = Ti, V, Cr, Mn, Fe, Co, Ni) [4,8-17], as well as sev-
eral Na compounds with mixed transition metals, Na,Nig 5Cog 203,
Na,NiMn; _ 0, NaTi,Mn; 0y, Na,FepsMngs0s, NaFeysCops0a
NaNi; sMn; 5C01420; and NaNiygFeqsMny 50, [18-27), all show elec-

hemical activity.

e — ——
formance of NaNi, sFe, 3Co, 20; as a novel Na intercalation cathode
material, The only layered materials in which three transition
metals are mixed in the literature are NaNi; sFe;sMny;:0, [26]
X and MaNi; sMn, 5C0; 305 [24], and their capacity is limited to about

Electrochemical properties of NaNi; 5Co, sFe; 204 as a cathode material
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material is de-sodiated the Fe and Co are first oxidized to 4+ while the
Ni goes through two oxidation steps to reach a final oxidation state in
the fully de-sodiated structure of Co*+, Fe*+ and Ni*t,

2. Experimental methods

NaNiy 2Co1aFe 1202 was synthesized by solid-state reaction. Excess
amounts of Nas0, NiD, Cos04 and Fe,05 were mixed and ball milled
for 4 h at 500 rpm rate, and the resulting material was collected in the
glove box. About 0.5 g of powder was fired at 800 °C under O; for
14 h before it was quenched to room temperature and moved to a

A-Tay P ected on a PANalY
X'Pert Pro equipped with Cu Ka radiation in the 26 range of 5-85°,
All the samples were sealed with Kapton film to avoid air exposure.
Profile matching of the powder diffraction data of the as-prepared
NaNiy3Coq sFeq502 was performed with Highscore Plus using space
group R-3m.
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Time-based literature holdouts predict recipes @ MS
for recently-reported perovskites
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Many more zeolites are predicted to be #3DMS
stable than have been realized experimentally
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There are significant opportunities #DOMS
beyond electricity
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Develop low environmental impact concrete E@{ IMS
mixtures through effective use of waste materials
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