

Workshop on New Cross-cutting Technologies for Nuclear Power Plants

Session 2: Supercritical CO₂ cycle for advanced NPPs

MIT: Cambridge, MA : Jan 30-31, 2017

Steven A. Wright (PhD) swright@supercritical.tech 505 452 7774

SuperCritical Technologies Inc. Bremerton, Wa Sandia National Laboratories (Retired) Mark Anderson (PhD) manderson@engr.wisc.edu 608-263-2802

University of Wisconsin Madison, Wisconsin

Can we increase the efficiency/utilization? YES M

The sCO₂ power cycle allows for high temperature heat and waste heat recovery, carbon capture. (Significant Market Potential)

Potential for Natural Gas/Coal with CO₂ Capture Oxy-Fuel Combustion Cycle (This is already being done by NetPower) 50MWth system

Advanced High Temperature CSP Energy Generation

Advanced High Temperature Nuclear Energy Generation

Increasing from 39% Eff to 50-55% Provides an LCOE = 6 – 7 ¢/kWh

Energy Generation from Waste Heat, NG-Compression, Industrial

T-S diagram for Split flow s-CO2 cycle "Recompression" Cycle

PC =7.3 Mpa (1070psi), TC=31C (88F)

SuperCritical Technologies

WISC[©]2

Μ

M Larger Scale SCO₂ Recompression Cycle

J.P. Gibbs, P. Hejzlar, & M.J. Driscoll. (2006). Applicability of Supercritical CO2 Power Conversion Systems to GEN IV Reactors (Topical Report No. MIT-GFR-037) (p. 97). Cambridge, MA: Center for Advanced Nuclear Energy Systems MIT Department of Nuclear Science and Engineering.

1/31/2017

UNIVERSITY OF WISCONSIN

4

SuperCritical Technologies

WISCĜ2

WISC[©]2

SuperCritical Technologies,

M What is Supercritical Carbon Dioxide? Inert Abundant Gas

- Use of carbon dioxide (CO₂) above its critical point.
 - Critical temperature is 31.1°C (88°F).
 - Critical pressure is 7.39 MPa (1,072 psi).

Low temperature acts like a liquid – High temp acts as a gas

- Currently used extensively as a solvent and occasionally as a refrigerant.
 - Dry cleaning, decaffeinating coffee, etc.
- Ideal for use in a power cycle---closer to the ideal Carnot Cycle --could displace the use of steam -> \$10's of billions/year in
 potential technology.
 - With Condensation Efficiencies increase. "Transcritical Cycle"
 - Cascaded cycles are good for Sensible Heat (WHR, and Fossil) Abundant – Inexpensive, Non-toxic, GWP=1

Mow is this cycle different from Rankine? sCO₂ Turbine Region of Operation

What about capital costs? The sCO2 cycle is much smaller – less material

V. Dostal, "A Supercritical Carbon Dioxide Cycle for Next Generation Nuclear Reactors," Ph.D. Thesis, pg. 304, MIT, 2004.

10MWe size comparison

sCO2 has high power density

- sCO₂ cycle has potential for thermodynamic performance > steam Rankine
- Potential for improved capital cost saving
 - Turbine size : S-CO2 < He << Rankine
 - Compressor size: S-CO2 <<< He
 - Total pipe volumes: S-CO2<< He
 - Cost of working fluid: S-CO2<< He

50 kW (67 horsepower) compressor

Wright et al., "Operation and Analysis of a Supercritical CO2 Brayton Cycle," Sandia Report, SAND2010-0171, pp. 1-101 (2010)

Is it more complicated? No The sCO2 cycle is also actually much simpler

$$\eta_{plant} = 39.8\%$$

 η_{plant} = 45%

Source: Kulhanek M., Doshermtal V., Todynamic Analysis and Comparison of Supercritical Carbon Dioxide Cycles. Supercritical CO2 Power Cycle Symposium, May 24-25, 2011

Recompression Cycle has Highest Efficiency Variations such as Condensing, Inter-Cooling, Reheating improve efficiency Other Cycles available for Sensible Heat Power Systems

SuperCritical Technologies

Representative Cycle Efficiency (from McClung 2015)

Recompression Brayton Cycle

13

11 S

sCO₂ Power Cycle: Advantages & WISCO₂ Disadvantages

Advantages

- 1. 2-4 Percentage Points more Efficient than Steam Plants at same Turbine Inlet Temperature (Re-Compression Cycle is closer to the Ideal Carnot Cycle)
- 2. Small Turbomachinery (due to low pressure ratio => Lower Costs)
- 3. Operates well with Dry Cooling (Larger dT, Pinch Point is less Challenging, Benefits for CHP)
- 4. Operating Pressure is Same or Lower as in Steam
- 5. Integrates well with all Heat Sources + New Opportunities (Bulk Energy Storage)
- 6. Potential for Very High Temperature Operations (750-1200 C) (Eff 50-60%)
- 7. Oxy-Combustion Enables Fossil Fuels with Near Zero Emissions

Disadvantages

- 1. Added Capital Costs Due to Recuperation and High Temp. Heat Exchangers & High Nickel Steels
- 2. Very High Power Density in Turbine (Reliability needs Proving + New Design Req.)
- 3. Generally Needs Higher Mass Flow Rates than Steam (may limit size to 300-600 MWe)
- 4. Costly Materials at High Temperature
- 5. New Technology for Oxy-Combustion and High Power Density Turbines

CROSS CUTTING TECHNOLOGIES

Small Turbomachinery Turbomachinery Support Hardware Heat Exchangers Materials

Supercritical Oxy-Combustion sCO2 High Temperature Reactors

Example: 10 MWe Turbine Comparison

 \mathbf{S}

Source (Musgrove, et al: Fundamentals: SWRI

Source: Persichilli et al. (2012)

15 S

WISC[©]2

^M_sCO₂ Materials Research

Several groups, vendors and world wide are looking at corrosion in CO2 and there is a lot of collaboration in this area.

S-CO₂ Flow testing (corrosion/erosion)

Low speed HX test facility

Valve, seal, high speed flow test facility SuperCritical Technologies

WISC[©]2

^MCurrent Status of materials

Higher Creep Strength at Elevated Temperatures

Alloys with Ti, Ni, Al, and high Cr typically have good corrosion resistance

Alloys with high amounts of Cr and Ni and trace amounts of Ti and Al build a stable oxide layer to resist corrosion

Steel alloys with low amounts of Cr typically build up a duplex layer with a thick iron oxide layer

Lower Corrosion at Elevated Temperatures

M					
Alloys	Oxide	Number Density	overall corrosion rate	Comments	
Haynes 282	Elongated Nb-Ti rich oxide cluster (50um)	Low	(~1um- 2um)/year@750C	Excellent corrosion resistnace/ good strength at temp	
	Cr rich oxide (<1um)	High			
IN740	Elongated Nb-Ti rich oxide cluster (50um)	Low	(~1um- 2um)/year@750C	Excellent corrosion resistnace/ good strength at temp	
	Cr rich oxide (<1um)	High			
Haynes230	Elongated W rich oxide cluster (30um)	Medium	450C - <1um/year 550C - <1um/year 650C - 5um/year	Good corrosion resistance. Needs to be looked at for higher temps.	
	Cr rich oxide (<1um)	High			
IN800H	Ti oxide cluster (20um)	Low	450C - 1-2um/year 550C- 5 um/year 650C - 30 um/year	Performed similar to 347 but cost is considerable higher	
	Cr-Mn rich oxide (<1um)	High			
	Octahedral Fe oxide cluster (30um)	Medium			
347SS	Nb oxide (<1um)	Medium	450C - 5um/year 550C- 5um/year 650C - 35um/year	Alloy performed pretty well at most temps - started to fall off at 650 not suitable for higher temps	
	Needle Cr-Mn rich oxide scale	Whole surface with			
		some spallation			
	Octahedral Fe oxide cluster (20um)	High			
316L	Octahedral Fe oxide scale	70% of surface	450 C - 10um/year 550 C - 30-50um/year 650 C- 100 um/year	Ok for lower temperatures 347 performed much better	
	Octahedral Cr-Mn rich oxide scale	30% of surface			
AFA-OC6	Nb oxide (<10um)	High	450C - 1-2um/year 550C- 5-10um/year 650C - 200um/year	Ok for low temperatures/ alloy somewhat unstable	
	Cr-Mn rich oxide (<1um)	Very high			
	Fe oxide (<10um)	Low			
P91/T122	Magnetite and spinel layers	100% coverage high corrosion rate	>1000mu/year	not suitable for 450+	

There is currently also work looking at impurities anticabating sologies 18

M & S

Dostal V., Driscoll MJ, Hejzlar P., Cross Cutting Technology Conclusions

- MIT Study on sCO2 Power Conversion for Nuclear Reactors : Cross Cut Success
 - Fostered a New sCO₂ Power System Industry (Nuclear, CSP, WHR, Fossil) (see map)
 - Enables Burning of Fossil Fuels with Zero Emissions at Affordable Costs
 - **Cross Cutting Support within DOE (EERE, FE, NE)**
 - Turbine is high risk component, but small and affordable
 - Micro-tube Heat Exchangers offer low mass, small size and lower costs
 - New Materials (Alloy 740 has high creep strength and low corrosion)

Current sCO2 work sites

sCO₂ Power and Reactors WISC[©]2

Eff increase from 39% to 50% -55% Lowers Cap Cost and LCOE

Direct sCO2 Reactors Lower Capital Costs and Lower LCOE Costs

- No prim HX, No 2ndary HX,
- **Smaller Reactor and Turbine Hall**
- Natural Circulation for Decay Heat Removal
- Much higher efficiency (55%) at 850-900C
- **Indirect Cooled Reactors**
 - Focus on Lower Cap. Costs
 - High Temp 700-750C and high 50% efficiency

sCO₂ Power System Costs

SCT 5-10 MWe sCO2 WHR

 Plant Costs WHR 1.2-1.5 \$/We nth of a kind

GE-(Dash et al. 2013) sCO2 Demo

- Net Power : 137.5 MW
- Efficiency : 49.31 %
- Plant Cost (10th unit): 146.6 M\$
- Plant Specific Cost: 1070
 \$/kWe
- No DM Water Plant, less O&M
- Suitable for remote operation & fast start

Gas Turbine	15 MWe
sCO2 Plant	5 MWe
Efficiency	47-48%

SuperCritical Technologies 22

23 S

Future: Advanced sCO2 Power System

Green = Zero Emissions Blk = NGCC like Emissions **COST SUMMARY** LCOE eff Plant Type **Cap Cost** Overnight Fuel Base Case Cost Cost \$/kWe \$/mmBTU ¢/kWh sCO2 System Estimates Nuclear **Gen IV HT-Nuclear** tbd tbd 50% - 55% [8]Adv. GEN-III+ 5945 9.97 39% [9]NuScale LWR-SMR 5078 10 24% est sCO2 HTCGR eff-55% no HX **** 4000 -5400 est 6.4 est 55% Gen III + with 10% Reduct Cap X NGCC Eff Increase to 55% 52% (est)**** [8]NGCC (2016) 978 3 est 5.64 [7]NGCC CCS (2010) 11.0 1637 6.55 42.2% [7]Oxy-CES(Steam) 3146 6.55 14.2 44.7% Coal Oxy-sCO2 [10]PC Coal-CO2 Indirect SWRI 5600 [12]PC Coal-CO2 Indirect BAH 11 [13]Coal-Gas CO2 Direct NetPwr 1.73 6.5 NG Combustion Gas Turbine or sCO2 Turbine [8]Advanced Gas Turbine 678 9.36 36-40%(est) [11]NG-sCO2 GE Feasibilty 1100 6.0 est 49.30% NG Direct Oxy-sCO2 [13]NG-NetPower Allam (2016) 52%-60% 3 4 NG with 52-55% Net Ef Oxy-CO2 Direct (2016) ** 52-60% 1800-2800 (est) 7 (est) 3 Adv sCO₂ Nuclear Competitive to NGCC 1) **Existing Nuclear Competitive to NGCC – CCS** 2) SuperCritical Technologies **Oxy-Combustion Competitive to NGCC** 3)

sCO2 Development Path WISCO2

Next Step in sCO₂ Evolution

- Multiple 5-10 MWe or Greater Pilot Plant Systems (WHR or Biomass)
- Commercial (Echogen& Affiliates, SuperCritical Technologies, Peregrine Turbines)

sCO₂ Systems High Temperature System

- Systems having: Zero Emissions using Fossil Fuels
 - Commercial Net Power, Toshiba, CBI, Exelon
- Systems having High Temp, High Efficiency for Reactors & CSP
 - US Government STEP Program + Other Nation States

Call for proposals for a 6 year \$100M program (20% required cost share) to develop and test components of a 10MWe sCO2 cycle that operates at 700C Oct 17, 2016 DOE announced a \$80M STEP initiative project award led by GTI with GE and SWRI as major team partners. Contract Negotiations are still in progress.

Caution: All early systems are **Developmental**itical Technologies

WISC_{\$2} **Conclusion: sCO₂ Reactor Business Model**

Proposal

S

- US or International Corporation
- Develop High Temperature, High Efficiency Reactor with sCO₂ Power Conversion (target 50-55% efficiency 50%)
 - Use known fuel cycle and fuel fabrication (oxide, coated particle)
 - Target Lower Specific Capital Costs to ~ \$4000-5400/kW)
- Investment Funding
 - Focus on Volume Sales, with preset PPAs, Contractual Sales Agreements if performance targets are met in a Pilot Plant
 - Operation of Pilot Plant Pays for the Demonstration Testing
- Design Focus
 - Single loop, small foot print, natural circulation decay heat removal, 50-55% Efficiency, with known fuel processing capabilities
 - Factory Built SMR 100-250 MWe
 - Licensed via Nation State (US, Canada, UK, S. Korea, India, Indonesia, etc.)
 - Focus Markets on High Growth Regions (Africa, India, S.E. Asia, Pacific Nations)
- Deal with Policy Issues
 - Fuel Fabricated in West, and Returned to West
 SuperCritical Technologies
 - Requires a Licensed Waste Repository