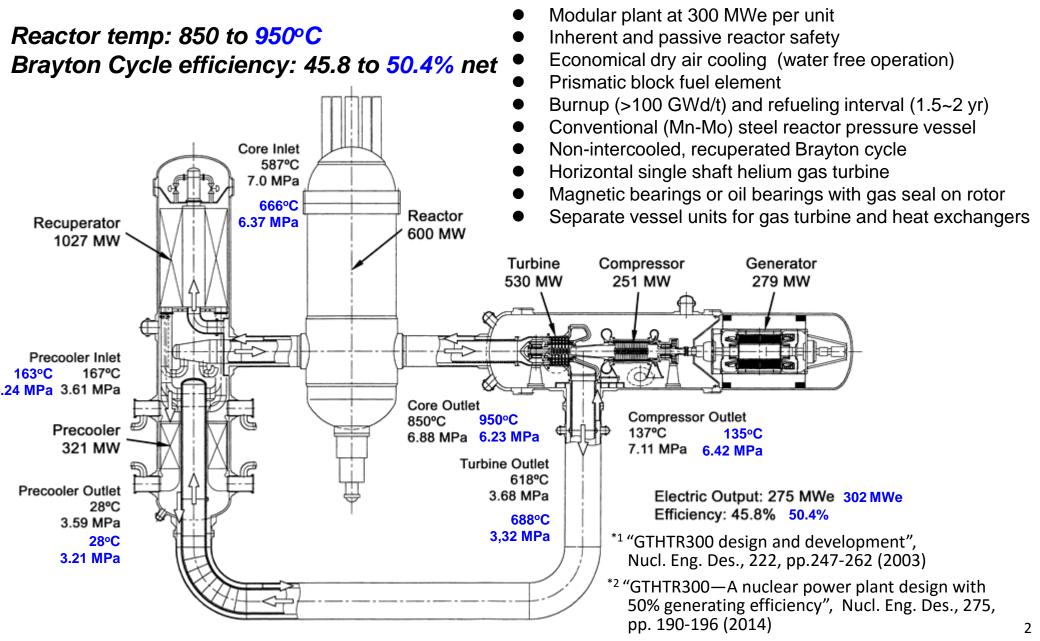
MIT Workshop on New Cross-cutting Technologies for Nuclear Power Plants, Cambridge, USA, January 30-31, 2017

HTGR Brayton Cycle Technology and Operations

Xing L. Yan

HTGR Hydrogen and Heat Application Research Center Japan Atomic Energy Agency (JAEA)

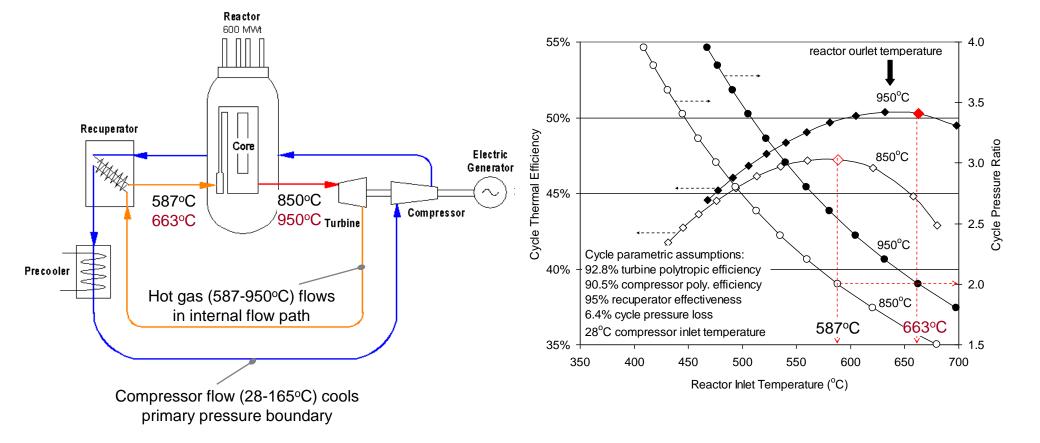
Contents



Highlighted with JAEA's GTHTR300 technology

- **1. Power Conversion Cycle Parameters**
- 2. Cost
- 3. Operations
- 4. Readiness and Qualification

JAEA GTHTR300 – Power Conversion Cycle^{*1,*2}



Power Conversion Cycle Point Design*

High temperature at <u>reactor inlet</u> is as important as at reactor outlet for arriving at a viable point design in terms of cycle efficiency and gas turbine feasibility.

^{*} "GTHTR300 design and development", Nucl. Eng. Des., 222, pp.247-262 (2003)

GTHTR300 helium gas turbine

... is a line of designs scaled aerodynamically and mechanically similar from a baseline design

Baseline design: 6 turbine stages, 20 compressor stages, non-intercooled, single shaft, 3600 rpm, 300 MWe class

- Scaled from baseline gas turbine by changing inlet pressure or rotational speed while holding wheel speed constant
- Similar aerodynamics
- Similar disc stresses

Gas turbine

Pres.

ratio

2.00

2.00

2.00

1.47

Speed

[rpm]

3,600

3,600

3,600

4,215

Unit

GTHTR300

GTHTR300+

GTHTR300C

GTHTR300H

Needed to develop the baseline gas turbine only

Mass

flow

[kg/s]

445

408

327

327

Inlet T

[°C]

28.0

28.0

26.2

26.2

Compressor section

rim

speed

[m/s]

282

282

282

282

Inlet P

[MPa]

3.5

3.2

2.6

3.5

Inlet T

[°C]

850

950

850

730

Inlet P

[MPa]

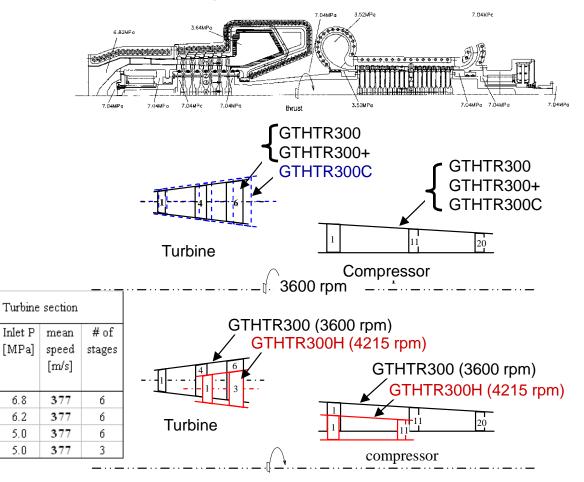
б.8

6.2

5.0

5.0

of

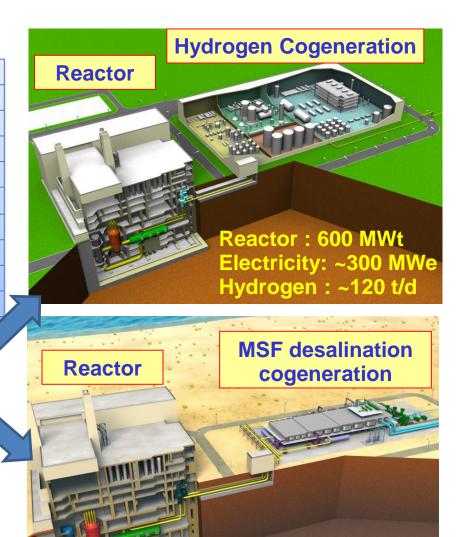

stages

20

20

20

11



GTHTR300 typical applications

GTHTR300: Peak production parameters

Reactor power (max. output)	600 MWt
Reactor temperature	850-950°C
Refueling interval/period	1.5-2 yrs/30 days
Plant load factor	90%
Reactor coolant pressure	7 MPa
Typical products (max. output)	
 Hydrogen (thermochemical method) 	120 t/d
• Electric power (50% net efficiency)	300 MWe
 Desalination (cogenerated w/power) 	55,000 m³/d
 Steel (CO₂ free steelmaking) 	0.65 million t/yr

Power Generation

Reactor thermal: 600 MWt Net electricity: 300 MWe Generation efficiency: 50%

GTHTR300 Cost Estimates

US\$1≈J¥100

Construction Cost^{*1} (per reactor unit, 4 units/plant, NOAK)

Reactor	¥17,080M
Power Conversion	¥14,011M
Auxiliary	¥ 6,723M
Electric, Instrumentation & Control	¥ 5,780M
Buildings	<u>¥11,071M</u>
Total	¥54,665M (~US\$2,000/kWe)

Electricity Cost (3% discount rate, 40 years operation, 80% availability)

Y	ear estimated ->	2006 ^{*1}	2014
Capital *2		¥1.6/kWh	¥2.0/kWh
Operation & Maint	tenance	¥1.1/kWh	¥1.9/kWh
Fuel *3		<u>¥1.4/kWh</u>	<u>¥1.4/kWh</u>
Total		¥4.1/kWh	¥5.3/kWh

^{*1} Economical Evaluation on Gas Turbine High Temperature Reactor 300 (GTHTR300) Vol. 5(2) p. 109-117 (2006)

^{*2} Including decommissioning cost, ^{*3} Including reprocessing cost

GTHTR300 Cost Estimates (details)

US\$1≈J¥100

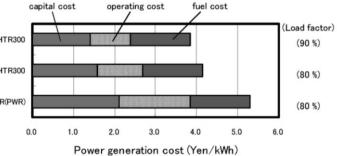
Construction cost

Component	Million Yen	Yen/kWe
Reactor components	17,080	62,200
Reactor pressure vessel	4,095	14,900
Core components	4,229	15,400
Reactivity control system	3,060	11,100
Shutdown cooling system	956	3,500
Vessel cooling system	1,285	4,700
Fuel handling and storage sys- tem	3,101	11,300
Radioactive waste treatment system	354	1,300
Power conversion system	14,011	51,000
Turbine and compressor	3,414	12,400
Generator	1,435	5,200
Power conversion vessel	1,872	6,800
Heat exchanger	3,008	11,000
Heat exchanger vessel	2,220	8,100
Hot piping	2,062	7,500
Auxiliary system	6,723	24,400
Helium purification system	1,125	4,100
Helium storage and supply sys- tem	1,131	4,100
Cooling water system	1,479	5,400
Radiation management system	965	3,500
Ventilation and air condition- ing system	1,376	5,000
Other systems	647	2,300
Electric system, control and in- strumentation system	5,780	21,000
Electric system	4,000	14,500
Control and instrumentation system	1,780	6,500
Buildings	11,071	40,300

Capital cost (Yen/kWh)

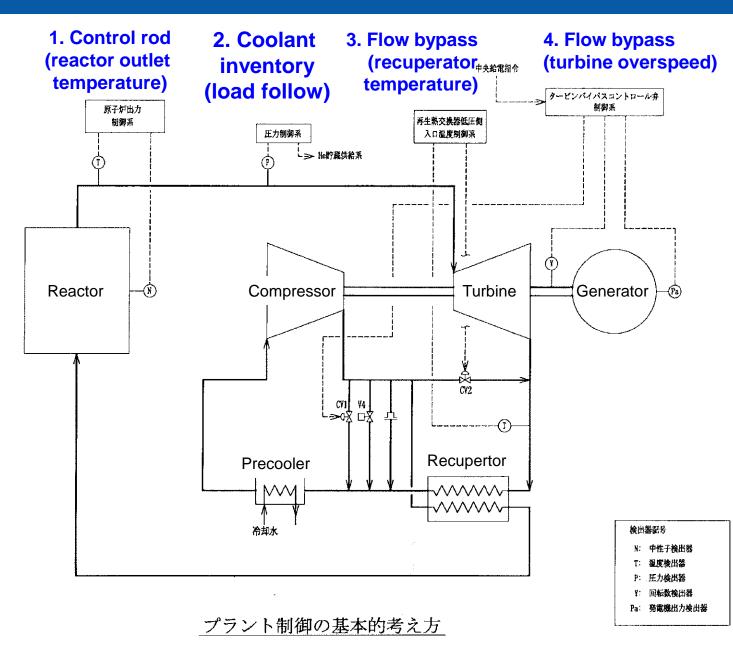
Load factor	80%		90%	
Discount rate	3%	4%	3%	4%
Depreciation cost	1.02	1.12	0.90	0.99
Interest cost	0.24	0.35	0.21	0.31
Property tax	0.11	0.12	0.10	0.11
Decommissioning cost	0.21	0.15	0.18	0.14
Total	1.57	1.74	1.40	1.55

Operating cost (Yen/kWh)


Load factor	80%		90%	
Discount rate	3%	4%	3%	4%
Maintenance cost	0.41	0.41	0.36	0.36
Miscellaneous cost	0.45	0.45	0.40	0.40
Personnel cost	0.19	0.19	0.17	0.17
Head office cost	0.01	0.01	0.01	0.01
Business tax	0.05	0.06	0.05	0.05
Total	1.11	1.11	0.99	0.99

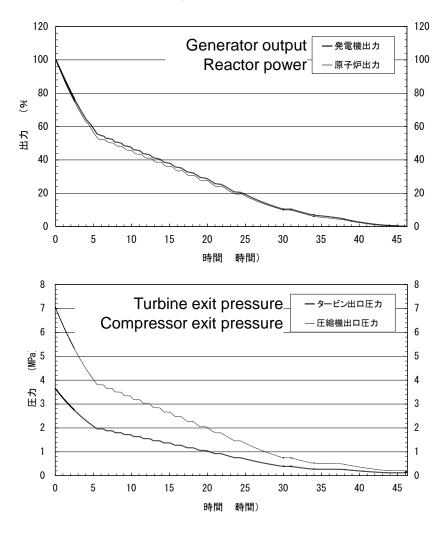
Power generation cost (Yen/kWh)

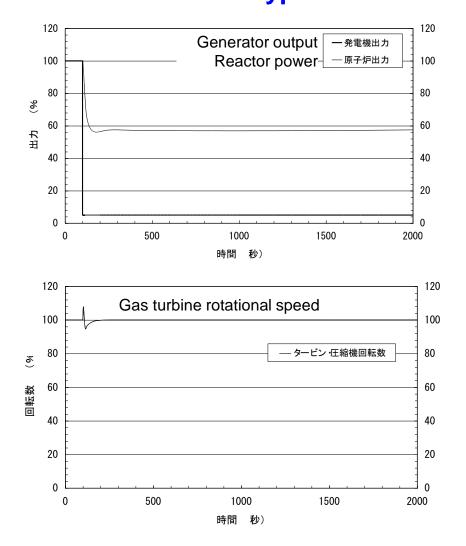
Load factor	80%		90	0%
Discount rate	3%	4%	3%	4%
Capital cost	1.57	1.74	1.40	1.55
Operating cost	1.11	1.11	0.99	0.99
Fuel cost	1.46	1.44	1.46	1.44
Total(LWR) ¹⁰⁾	4.14 (5.3)	4.28 (5.6)	3.84 $(-)$	3.97 $(-)$


Fuel cost (Yen/kWh)

Discount rate	3%	4%	
Uranium purchase and conversion cost	0.14	0.15	
Enrichment cost	0.29	0.31	
Fabrication cost	0.43	0.44	
Storage cost	0.02	0.02	
Reprocessing cost	0.40	0.38	
Waste disposal cost	0.18	0.15	
Total	1.46	1.44	

Operations – control system

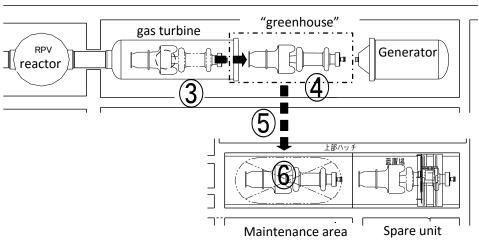



Operations – simulation results

Full ↔ Part load operation – with inventory control

Loss of load – with turbine flow bypass control

Operations – Maintenance access



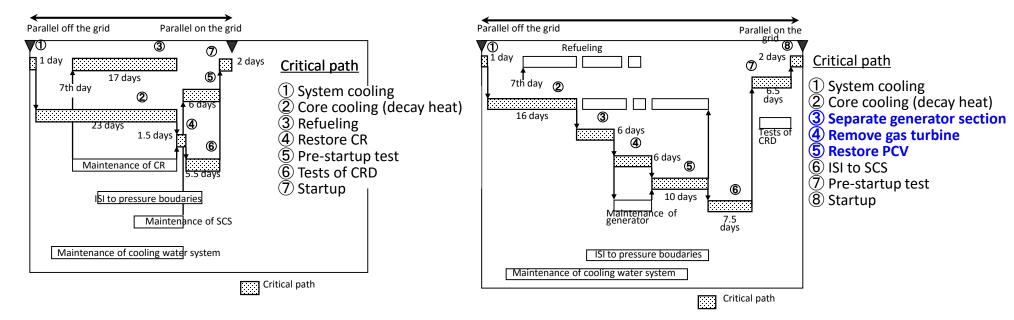
Gas turbine maintenance sequence (service period: 22 days)

- ① Disconnect the PCV flange
- ② separate the generator section
- ③ Disconnect the gas turbine unit supports and flanges with remote arms
- ④ Pull the gas turbine unit out of the PCV on rail into "greenhouse"
- (5) Move the gas turbine unit to maintenance area
- 6 Restore the PCV with pre-refurbished (spare) unit in reversed orders $\textcircled{5} \rightarrow \textcircled{1}$

gas turbine generator reactor PCV – power conversion vessel

Gas turbine maintenance sequence

Operations – Maintenance cycles


GTHTR300 shutdown maintenance cycles

- Refuel service interval: 2 years
- Gas turbine service interval: 4 years

Downtime impact on plant availability: 6%

1st cycle: refuel

33 days

2nd cycle: refuel+gas turbine maintenance cycle

(then repeat 1st cycle)

Readiness & qualification – technologies developed

(1) HTGR technology

- 30 MWt and 950°C prismatic core advanced test reactor (Operation started in 1998)
- Technology of fuel, graphite, superalloy and experience of operation, and maintenance.
- Post-F1 safety evaluation by NRA is underway.

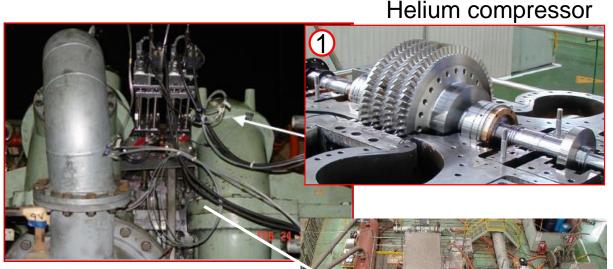
(2) GT and hydrogen technology

- R&D of gas turbine technologies such as helium compressor, recuperator, magnetic bearing, gas seal, maintenance, etc.
- In 2016, 31 hours of continous automated hydrogen production with a rate of 20NL/h was successfully achieved.

(3) Commerical HTGR design

- GTHTR300 for electricity generation and desalination
- GTHTR300 for cogeneration and <u>nuclear/renewable</u> <u>energy synergy system</u>
- HTGR with Thorium fuel
- Clean Burn HTGR for surplus plutonium burning
- Establishment of safety design philosophy

(4) System demonstration test



- Connection of helium gas turbine power generation system and then hydrogen cogeneration system to the HTTR.
- Basic design for the HTTR-GT/H2 test is now underway.

Helium compressor technology*

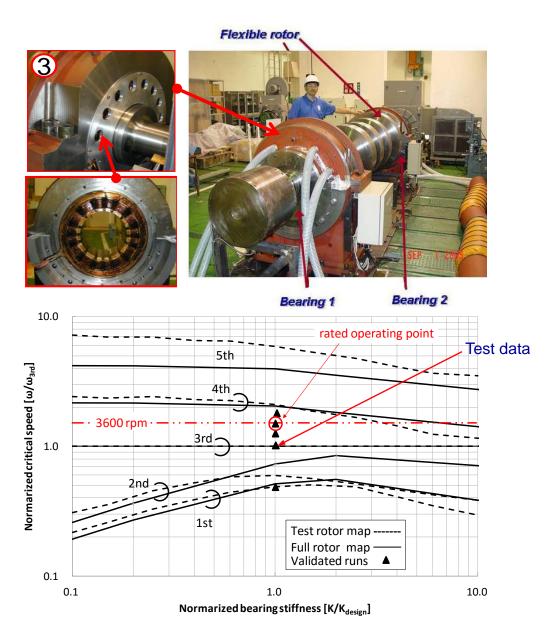
- Design method calibrated by 1/3 scale helium compressor test
- Full scale compressor adiabatic efficiency: 90.3% (polytropic efficiency 91.5%)

Traversed flow path probes 3rd rotor aft tip A100 2.8 Ö Standard Condition sign Point Inlet Press. 3.518MPa 90% G=441.8kg/ 2.6 let Temp. 28°C 0 77 ad=89% π=2.078 Surge Line ad=90.3% 80% 2.4 70% Ratio[-] 17 ad=87 7) ad=89% 60% Span Design Point - CFD e 2.0 n ad=87% Pressur 1.8 Surge margin Measured 77 ad=85% 40% n ad=83% 30% 1.6 110%N 20% 1.4 100%N 109 90%N 0 1.2 hub 450 500 550 600 350 400 300 0.25 0.50 0.75 1.00 Corrected Mass Flow, G* [kg/s] Normalized axial velocity, $\overline{\nu}$.

Helium compressor test rig

*Aerodynamic design, model test and CFD analysis for multistage axial helium compressor, Journal of Turbomachinery, 130 / 031018, pp.1-12 (2008)

Helium rotor bearing and gas seal technology



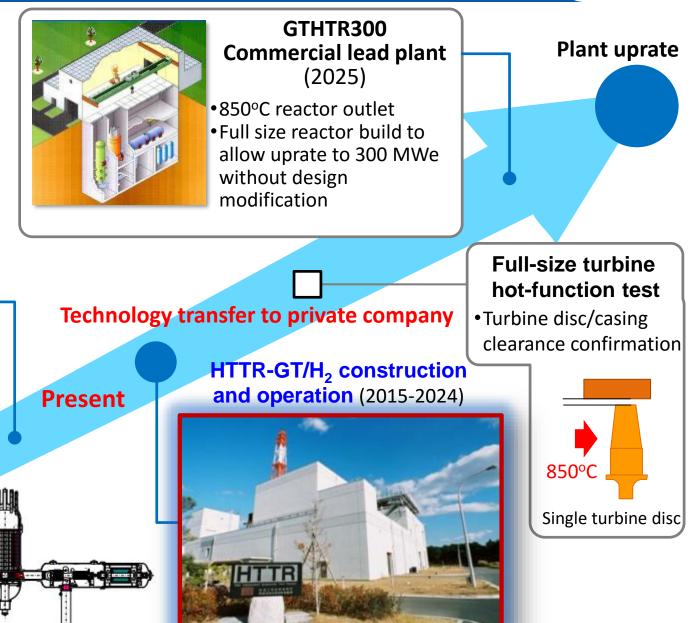
Magnetic bearing

- 1/3 scale, MB-rotor (5 tons) test rig constructed
- Test operated above first bending critical speed
- Control system tested

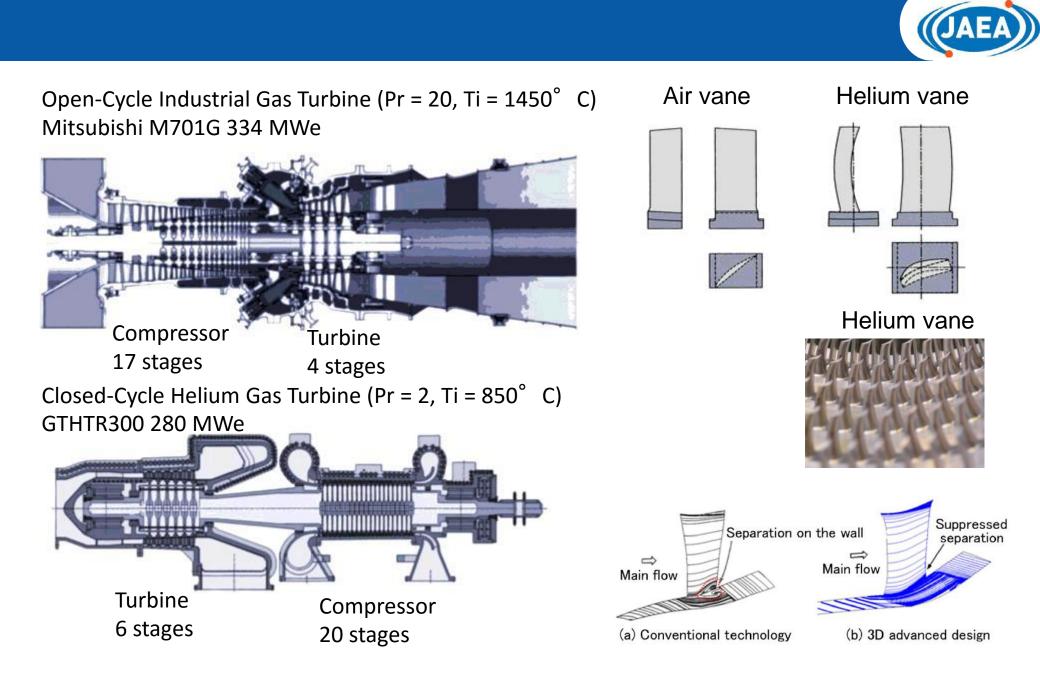
Gas seal (to allow use of oil bearing)

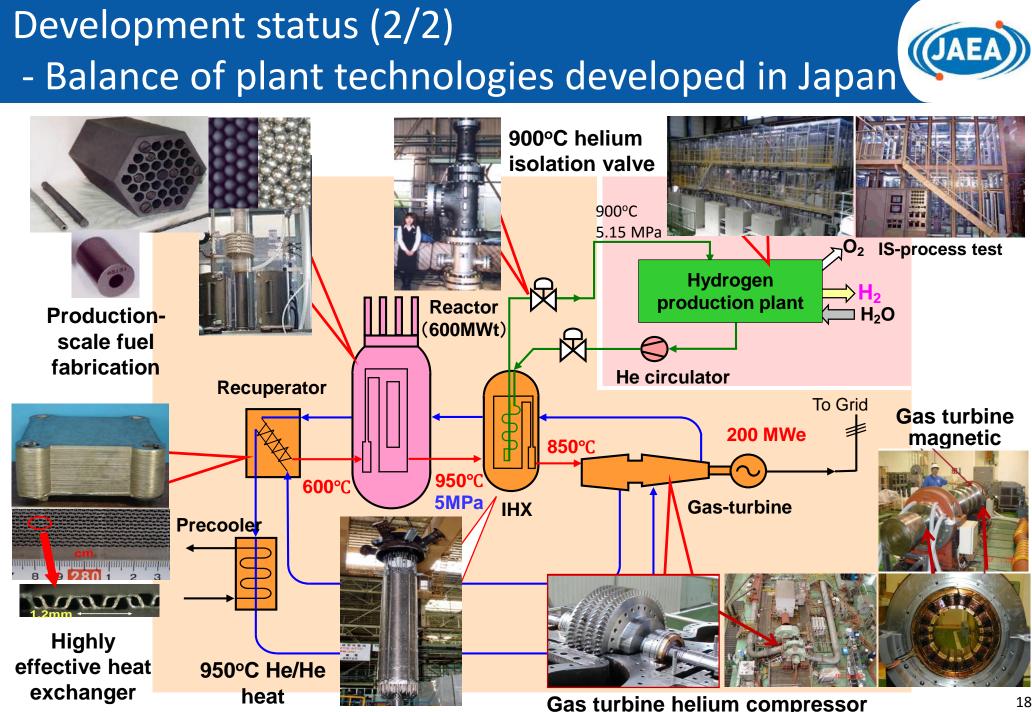
- Industrial design evaluated
- Leak expected to be minimum (<< HTTR safety license requirement)
- Verification test planned

Readiness and qualification - technical roadmap


Collaborative work with MHI

- Basic design, safety design, and cost estimation
- Development of high-efficiency He compressor, compact heat exchanger, etc.
- Turbine blade alloy development


World's first successful operation of axial He compressor, He compressor design method validated


Conceptual design for GTHTR300 power generation system (1998-2001)

Reference materials

