

Compact Heat Exchangers for Nuclear Power Plants

Topical Workshop on New Cross-Cutting Technologies for Nuclear Power Plants

Session 2: Advanced Power Conversion for NPP

Scott R. Penfield, Jr., PE

Massachusetts Institute of Technology January 30, 2017

Why Compact HXs?

TECHNOLOGY

Slide 2

INSIGHTS

Why Compact HXs?

- At first glance compact HXs would seem to be the obvious choice
- However, there is much more that needs to be considered

(Source: Ref. 5)

TECHNOLOGY INSIGHTS Slide 3

Why Compact HXs?

- At first glance compact HXs would seem to be the obvious choice
- However, there is much more that needs to be considered
- The selection of HX technology is very much application dependent

Overview

- Functions and Requirements
- HX Types
- Metallic Heat Exchangers
- Ceramic Heat Exchangers
- Heat Exchanger Incentives and Challenges
- Summary Observations

Functions (What?)

- Direct flow of fluids
- Transfer thermal energy
- Maintain pressure boundary integrity
- Transfer loads (internal and external)

Representative Advanced HX Applications

Application	Primary Fluid	Secondary Fluid	Max. Temp. (°C)	HX Class
SFR	Na	Na	500	IHX
SFR	Na	H ₂ O	475	SG
AHTR	FLiBe	Helium, Air, M-Salt	700	IHX
AHTR	M-Salt	H ₂ O	670	SG
HTGR-SC	Helium	H ₂ O	750	SG
HTGR-GT	Helium	N/A	500	Recuperator
HTGR-PH	Helium	Helium, M-Salt	850-950	IHX
HTGR-PH	Helium	Process Fluid	800-900	Process Coupling HX

Requirements

(Under what conditions? How well?)

- Thermal rating
- Chemical composition and properties of fluids
 - Heat transfer properties
 - Compatibility with HX materials
- Temperatures, pressures, flow rates
- Steady state and transient operating conditions, design lifetime (duty cycle)
- Structural loadings
 - Internal (e.g. flow induced)
 - External (e.g. seismic, vibration)
- Reliability
 - Pressure boundary integrity requirements some variation with application (IHX vs. recuperator)
 - Maintaining performance fouling, channel blocking, bypass, etc.
- Maintainability
- Economic (initial cost plus contribution to plant O&M cost)

GT-MHR Nominal Operating Parameters

Plate-Fin Recuperator

(Source: Ref. 6)

PRISM IHX

Type: Shell & Tube	
Rating (MWt):	840
Primary: Shell Side	
Fluid:	Sodium
T _{in} (°C):	499
T _{out} (°C):	360
W (m³/s):	5.4
Secondary: Tube Side	
Fluid:	Sodium
T _{in} (°C):	326
T _{out} (°C):	477
W (m³/s):	5.1

PRISM SG

AHTR IHX

Type: Shell & Tube	
Rating (MWt):	900
Primary: Shell Side	
Fluid:	FLiBe
T _{in} (°C):	600
T _{out} (°C):	704
W (m³/s):	1.9
Secondary: Tube Sid	e
Fluid:	FLiNaK
T _{in} (°C):	570
T _{out} (°C):	670
W (m³/s):	TBC

(Source: Ref. 11)

HTGR SG

Type: Shell & Helical Tub	De
Rating (MWt):	352
Primary: Shell Side	
Fluid:	Helium
Τ _{in} (° C):	725
T _{out} (°C):	290
P _{He} (MPa):	7
W (kg/s):	
Secondary: Tube Side	
Fluid:	H ₂ O
Τ _{in} (°C):	193
T _{out} (°C):	585
P _{steam} (MPa):	16.5
W (kg/s):	130.5

TECHNOLOGY

INSIGHTS Slide 14

VHTR Process Heat Application

Brayton Energy Unit Cell Plate-Fin IHX

Printed Circuit Heat Exchanger (PCHE)

Capillary Tube Heat Exchanger

Strength of Metallic HX Materials at High Temperatures

(Note: 300khrs ~ 40 life at design capacity factor)

Corrosion at High Temperatures

- Primary side chemistry in VHTRs (<u>>850</u>°C) poses a challenge for compact metallic HXs due to thin crosssections (Ref. 7)
 - Plate-fin HX thickness: Fins 0.102 mm; Plates 0.38 mm
 - In PCHE, plates are typically <u>>0.5 mm</u>; however, flow channels reduce the effective thickness to a value comparable to the plates in the plate-fin design

- Data analyzed in Ref. 7 at 950°C suggest that the predicted depths of internal oxidation could approach or exceed material thickness after only a few years of exposure
- Alloy X had the greatest resistance to corrosion, but strength inferior to Alloy 617 at highest temperatures
 - May be best candidate at <850°C</p>

Ceramatec Ceramic (SiC) HX Concept

Ceramic HX Concepts

Unit cell of offset-fin

Liquid Si Injected composite plate HX (UC Berkley)

Ceramic HX Tradeoffs

Advantages

- Temperature capability comparable to VHTR reactor
- SiC is compatible with a wide range of working fluids
- Potentially inexpensive materials and manufacture

Challenges

- Integration with remainder of circuit (ceramic to metallic joints)
- Reliability (leak tightness, potential for brittle fracture)
- Significant development effort

Observation

3-D printing may provide basis for breakthrough in compact ceramic microchannel HXs

Characteristics of Typical Advanced HXs

Characteristic	He Steam Generator	Recuperator	Na-Na IHX	He-He IHX	He-MS IHX
Typical HX Type	Shell & Tube	Plate-Fin	Shell & Tube	Plate-Fin; PCHE	PCHE, Capillary Tube
Compact HX	Optional	Required for Economic Viability	Optional	Required for Economic Viability	Optional?
Maximum Temperature	700°C - 750°C	500°C	500°C	850°C - 1000°C	850°C - 1000°C
Pressure Differential	Large	Intermediate, potentially varying	Low	Low	Large
Materials	Alloy 800	Alloy 800, Alloy X	SS	Alloy X, I-617, Ceramics	I-617, Ceramics
Materials Compatibility w/Working Fluid	Good	Good	Good	Metallics: Concern w/primary side corrosion (thin x- sections) Ceramics: Potentially good	Metallics: Concern w/primary & secondary side corrosion Ceramics: Potentially good
Pressure Boundary Integrity	High integrity required	Some leakage acceptable - degrades	High integrity required	High integrity required	High integrity required
Reliability/Lifetime	Good	Good	Good	Metallics: Life limited by creep, corrosion Ceramics: Potentially good	Metallics: Life limited by creep, corrosion Ceramics: Potentially good
Duty Cycle/Transients	ОК	Good	ОК	P-F: Good; PCHE: ?	?
Economics	Higher \$/kWt	Good	ОК	Potentially good	Potentially good
Development Status	Current SOA	Current SOA	Current SOA	Developmental	Developmental
Additional Issues		Channel blockage		Channel blockage, Ceramic-metal joints	Channel blockage, Ceramic-metal joints

Slide 24

Closing Observations

- 1. Heat exchanger design selections must be driven by functions and requirements
 - Optimum designs will vary significantly with application and requirements
 - Compact HXs are essential for some applications, e.g., HTGR-GT recuperators, HTGR-PH IHX
 - In other applications, incentives are not so clear, e.g. SFR and AHTR IHX
- 2. Compact metallic HXs are practical to ~850°C in pressure balanced applications

Corrosion may govern life at higher temperatures

Closing Observations

- 4. Compact ceramic HXs would be potentially enabling for higher temperatures and for challenging working fluids
- 5. Advanced manufacturing (3-D Printing) may enhance potential for very high temperature compact HXs:
 - Reduction of wasted material during manufacture of PCHEs
 - ODS Alloys (current manufacturing processes degrade properties)
 - Ceramic HXs

References

- 1. K. Sun, L. Hu, and C. Forsberg, MIT Reactor (MITR) Driven Subcritical Facility for the Fluoride-salt-cooled High-temperature Reactor (FHR), HTR-16, Las Vegas, NV, 2016.
- 2. B. Triplett, E. Loewen, and B. Dooies, PRISM: A Competitive Small Modular Sodium-Cooled Reactor, Nuclear Technology Vol. 178, May 2012.
- 3. THTR Steam Generator High-Pressure Bundle during Manufacture, Slide from BBC/HRB presentation, Circa 1981.
- 4. Conceptual Design Report, SC-MHR Demonstration Plant, NGNP-R00016, Rev. 0, General Atomics, 23 Dec 2010.
- 5. C. McDonald, General Atomics, 1994.
- 6. S. Penfield, NGNP and Hydrogen Production Preconceptual Design Report, Special Study 20.3: High Temperature Process Heat Transfer And Transport, NGNP-20-RPT-003, Rev. 0, Westinghouse Electric Co., 25 Jan 2007.
- 7. S. Penfield, NGNP Conceptual Design Study: IHX and Heat Transport System, NGNP-HTS-RPT-TI001, Technology Insights, 1 Apr 2008.
- 8. P. Peterson, H. Zhao, and G. Fukuda, Comparison of Molten Salt and High-Pressure Helium for the NGNP Intermediate Heat Transfer Fluid, Report UCBTH-03-004, U.C. Berkeley, 5 Dec 2003.
- 9. M. Wilson, Development and Status of a Silicon Carbide High Temperature Heat Exchanger, Presentation at Technology Interchange Meeting (TIM), Ceramatec, Inc., 20 Jun 2006.
- 10. P. Peterson, Capillary Tube and Shell Heat Exchanger Design for Helium to Liquid Salt Heat Transfer, Report UCBTH-07-003, U.C. Berkeley, 7 May 2007.
- 11. P. Peterson, Design Status Update, Modular Pebble-Bed AHTR Design Review, 23 Nov 2009.

Compact Heat Exchangers for Nuclear Power Plants

BACKUP SLIDES

Metric	Shell & Tube	Capillary Tube	PCHE	Plate-Fin & Prime Surface
Cost/Performance Indic	ators			
Compactness (m²/m³ & MW/m³)	Poor	Intermediate	Good	Good
Calc t/MWt	13.5	0.88	1.16	0.25
Materials Utilization (t/MWt)	Poor: (13.5 t/MWt) Unlikely to be commercially viable	Good (0.9 t/MWt)	Good: (estimated to be 1.2 to 1.5 times plate-fin in final form; needs confirmation)	Best: (0.25 t/MWt) Most compact, least materials
Manufacturing Cost	Established manufacturing process	Manufacturing process looks to be very labor intensive and expensive.	Established manufacturing process, amenable to volume manufacturing	Established manufacturing process, amenable to volume manufacturing
State-of-the-Art				
Experience Base	HTTR, German PNP Development	None	PBMR DPP Recuperator, other commercial products	Conventional GT recuperators
Design & Manufacturing	Proven designs and manufacturing processes.	Proposed tubesheet manufacturing process not obviously feasible. Shell- side baffling will be very difficult with very large numbers of very small tubes	Proven designs and manufacturing processes.	Proven designs and manufacturing processes.

(Source: Ref. 7)

Metric	Shell & Tube	Capillary Tube	PCHE	Plate-Fin & Prime Surface
Robustness				
Normal operation	Best: Simple cylindrical geometry, stresses minimized in HT area. Header interfaces can be easily isolated from HT area.	Simple geometery of tubes a plus. Temperature effects on "tubesheet" unknown.	Good: Thicker plates; local debonding does not immediately affect pressure boundary.	Concern: Thin plates with brazed joints in pressure boundary; stress risers in pressure boundary joints (but normally operate in compession). Small material and braze defects more significant.
Transients	Good: Simple cylindrical geometry avoids stress concentrations in HT area. Potential issues in headers, tube/header interfaces.	"Tubesheet" and tube/tubesheet interfaces are potentially problematical	Differing thermal response characteristics of inner HT core vs. solid outer boundary surrounding HT core raises potential for higher transient thermal stresses vs. plate-in.	Best: Thin sections and flexible design minimizes the effects of transients.

(Source: Ref. 7)

Metric	Shell & Tube	Capillary Tube	PCHE	Plate-Fin &
Environmental Compatib	ility	• •		
Coolant chemistry/ corrosion effects (Assumes PHTS on tube side or inside of compact HX cells, SHTS on shell/outside)	Best: Thick tubes provide maximum resistance	Favorable tube-side geometry. Intermediate section thickness and susceptibility to corrosion effects.	Intermediate section thickness and susceptibility to corrosion effects. Potential greater for "hideout" effects than tubular designs.	Worst: Thin plates and fins, potentially aggrevated by "hideout" locations, may be more susceptible to coolant chemistry effects.
Dust, erosion (Assumes PHTS on tube side or inside of compact HX cells, SHTS on shell/outside)	Best: Large tube IDs, thick tubes make dust/erosion an non-issue.	Intermediate: Will be more prone to dust collection due to smaller diameters, but low likelihood of direct impingement	More prone to dust deposition and erosion (small passages, potentially with features to enhance HT). PCHE cross-sections are thicker than plate- fin/prime surface.	More prone to dust deposition and erosion (small passages, with features to enhance HT). Fin cross-sections are thinner than PCHE cross- sections.
Tritium transport	Best: Thick tubes provide maximum resistance.	Intermediate. Thinner tubes	Worse. Average PCHE cross-sections thicker, but minimum cross-sections comparable to plate- fin/prime surface.	Worst: Thin plates provide least resistance to tritium transport.
Reliability & Integrity Man	agement (RIM)		<u>.</u>	
Detection of degradation and/or leaks during operation (Assumed SHTS to PHTS pressure bias)	Equivalent. Essentially pres Indication of significant leak increased injection of SHTS	sure balanced during norma cage would be manifested as helium and increased withd	l operation with SHTS at slig inability to maintain higher rawal of PHTS helium.	htly higher pressure. SHTS pressure and/or
Detection of degradation and/or leaks during outages	Large tube diameters may allow internal inspection of individual tubes to assess condition.	Design allows access to individual tubes to identify presence of leaks. However, a lot of tubes	Leaks can be detected at module level with concept similar to that proposed for plate-fin	Concept developed to detect leaks at module level.
Leak location; isolation, repair or replacement of failed components	Design allows location of leaks in individual tubes and plugging.	Design allows location of leaks in individual tubes and plugging. However, a lot of tubes.	Leaks can be isolated at module level with concept similar to that proposed for plate-fin.	Concept developed to locate and isolate leaks at module level.

(Source: Ref. 7)

Rev: 30 Jan 2017

Metric	Shell & Tube	Capillary Tube	PCHE	Plate-Fin & Prime Surface
HX Integration		-		•
Integration with Vessels & Piping	Headers and HX-vessel integration demon-strated (e.g., HTTR, German PNP)	Integration with piping needs further evaluation	OK (by inference from plate fin work).	ок
Compatibility with Multi- Stage IHX Designs	Large vessels tend to make less attractive	High manufacturing costs would make less attractive.	Compatible with multi- stage designs.	Compatible with multi- stage designs.
Compatibility with Multi- Module IHX Designs	Large tubes, headers likely incompatible with multi- module designs.	High manufacturing costs would make less attractive.	Compact cores are good match with multi-module designs.	Very compact cores are best match with multi- module designs.
Compatibility with Alternate HT Fluids (PHTS to SHTS)	Poor tube-side HT characteristics problematical for alternate gases with lower conductivity. Potentially best choice for LS designs with LS on tube side (drainable). Headers would be an issue for high- temperature outlet.	Poor tube-side HT characteristics problematical for alternate gases with lower conductivity. May be OK for LS designs with LS on tube side (drainable). Tubesheets would be an issue for high-temperature outlet.	Design provides flexibility for matching characteristics of differing HT fluids, including LS. May be difficult to develop drainable design for LS.	Likely not compatible with liquid salt HT fluids. Good flexibility for matching HT characteristics of alternate gases.
Design/Licensing				
Code Basis for Design	Existing Sect VIII Code design basis for tubular geometries and likely header designs	Existing Section VIII Code design basis for tubes, but header design has no Code precedents.	No existing design Code basis	No existing design Code basis

Typical GT Applications

DIRECT CYCLE

INDIRECT CYCLE

Typical Process Heat Application

