"A Great Solar Cell Has To Be a Great LED"; So What's Wrong With Subsidized Solar Panels?

> MIT Energy Initiative IHS Seminar, Cambridge Mass. 5PM, Wednesday Feb. 8, 2017

Eli Yablonovitch, Vidya Ganapati, Patrick Xiao Electrical Engineering and Computer Sciences Dept., Univ. of California, & Lawrence Berkeley Laboratory

GaAs solar cells are the preferred technology, where cost is no objection: Space

Courtesy of JAXA

The Epitaxial Liftoff Process:

Fig. 1 Schematic representation of the ELO process. a) The weight induced ELO process, b) ELO with a stabilized radius of curvature by guiding the temporary flexible carrier over a cylinder surface.

Fig. 2 (online colour at: www.pss-a.com) 1 µm thick GaAs film of 2 inch in diameter on a flexible plastic carrier (right hand side) after epitaxial lift-off from its substrate (left hand side).

Courtesy of Alta Devices, Inc.

Li Hejun

Shockley told us to generate the maximum possible external luminescence:

$$qV_{oc} = qV_{oc-ideal} - kT|ln\{\eta_{ext}\}|$$

$$\int \int f_{ext} f_{ext}$$
The external luminescence yield η_{ext} is what matters!

Luminescence can balance the incoming radiation.

For solar cells at 25%,

good electron-hole transport is already a given.

Further improvements of efficiency above 25% are all about the photon management!

A great solar cell needs be a great LED!

Counter-intuitively:

Solar cells perform best when there is maximum external fluorescence yield η_{ext} .

Miller et al, IEEE J. Photovoltaics, vol. 2, pp. 303-311 (2012)

Dual Junction Series-Connected Tandem Solar Cell

All Lattice-Matched $\eta \sim 34\%$ efficiency should be possible.

Dual-junction 1 sun results from Alta Devices, Inc.

ALTA has demonstrated >31.5% efficiency in the same system.

Expected to reach 34% dual junction, eventually.

Alta Devices GaInP/GaAs Tandem Cell

<u>38.8% Efficient-</u>-all time champion solar cell Quadruple-junction 1-sun cell captures diffuse & direct light

IEEE JOURNAL OF PHOTOVOLTAICS, VOL. 6, p.358 (JANUARY 2016) Myles A. Steiner, Sarah R. Kurtz, et al, NREL USA Counter-Intuitively, to approach the Shockley-Queisser Limit, you need to have good external fluorescence yield η_{ext} !!

Internal Fluorescence Yield $\eta_{int} >> 90\%$ Rear reflectivity >> 90% Both needed for good η_{ext}

What is happening in the solar economy? c-Si η ~ 15%-23% in production 90% market share

75GW/year annual world-wide production capacity

World-wide demand ~60GW/year

Oversupply!

The current world price has settled at \$0.40-0.50/Watt

Germany Electricity Generation

After spending ~10¹¹Euros, Germany has installed 40GW of panels, but receives only 7% of its electricity from solar What is happening in the solar economy? c-Si η ~ 15%-23% in production 90% market share

75GW/year annual world-wide production capacity

World-wide demand ~60GW/year

Oversupply!

The current world price is diving to \$0.40-0.50/Watt but cost is > \$0.60-0.70/Watt

Two TeraWatts can be built out in 30 years, requiring no additional capacity.

To justify additional production capacity

New and different application markets are needed.

For Photovoltaics to make a further impact, new applications and markets are needed; bigger than the 10% impact on the electric utility industry.

1. Pumped water for Reverse Osmosis desalination.

2. Solar Fuels:

- 3. Thermo-PhotoVoltaics
- 4. Electro-Luminescent Refrigeration & Heat Engines

Since we are for the first time making really efficient photovoltaic cells (also LED's), some new ideas become very timely

What is Thermo-PhotoVoltaics?

What is Thermo-PhotoVoltaics?

Thermo-PhotoVoltaic Hybrid Car:

Only ~20% efficiency

Proceedings Future Transportation Technology Conference, Christ, S. and Seal, M., "Viking 29 - A Thermophotovoltaic Hybrid Vehicle Designed and Built at Western Washington University," SAE Technical Paper 972650, 1997, doi:10.4271/972650.

Superb Rear Reflector; Recycle the Infrared Photons:

Default Solution: engineer the emissivity spectrum to preferentially produce big photons, $hv>E_g$ ~50 years of research

Recent developments in high-temperature photonic crystals for energy conversion

Veronika Rinnerbauer *^a, Sidy Ndao ^{bc}, Yi Xiang Yeng ^{ab}, Walker R. Chan ^{ab}, Jay J. Senkevich ^b, John D. Joannopoulos ^{ab}, Marin Soljačić ^{ab} and Ivan Celanovic ^b

^aResearch Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA

Energy Environ. Sci., (2012), 5, 8815-8823

Wavelength (nm)

280 suns bouncing around internally! Small area photovoltaic cell is adequate.

Convert Heat to Electricity with >50% Efficiency

Thermo-PhotoVoltaic Hybrid Car:

50kWatt—70cm × 70cm 1200°C is equivalent to 100suns to 500suns

Quad-Copters for civilian & military use:

Duration depends on energy density Lithium battery lasts 20 minutes.

Liquid fuel has 50× times higher energy density, would last 16 hours.

For Deep Space use, heat Source can be nuclear, SiC pellets at 1500°C.

Courtesy of JAXA

But there is competition from Fuel Cell vehicles; $2H_2+O_2\rightarrow 2H_2O$

requires H₂ storage; (but new H₂ storage technologies are being invented) Since we are for the first time making really efficient photovoltaic cells (also LED's), some new ideas become very timely

Electro-luminescent refrigeration (thermophotonic cooling)

My student Patrick Xiao

Traditional Thermoelectric cooler/generator

electric current drags entropy \rightarrow from left to right

Also works to generate electricity The hot side sends out more electrons than the cold side

Thermoelectric cooler

 \rightarrow ~10% of Carnot limit

Free Energy =
$$hv - T\Delta S$$

$$qV_{oc} = E_g - T\Delta S$$

For GaAs E_g is 1.4eV But the record V_{oc} =1.12Volts

Most of the entropy is due to loss of directionality information.

input 1.12 Volts

get out $E_g = hv = 1.4 eV$

Where does the extra 0.28eV come from? obviously heat from the lattice.

Most of the LED light entropy is due to loss of directionality information.

Electro-luminescence pumps out 0.3eV of heat/photon

Shockley's perpetual motion machine, circa ~1955

"Thermal Energy Taken from Surroundings in the...Radiation from a p-n Junction Jan Tauc, Czechoslovak J. Phys. 7, 275 (1957)

Electro-Luminescent Heat Engine: $T_C \neq T_H$ Convert heat to electricity, or electricity to refrigeration

The LED and the PhotoVoltaic Cell are really the same device.

This all works because GaAs is the most efficient fluorescent material that can be electrically pumped.

99.7% internal luminescent efficiency has been documented.

> For Yb:YLF, Ytterbium in Yttrium Lithium Fluoride, 99.9% luminescent efficiency is known.

We can actually do better than a perfect rear mirror: ideal transparent windows on both sides

~3× better than commercial thermo-electric coolers

Conclusions:

Since we are for the first time making really efficient photovoltaic cells (also LED's), some new ideas become very timely **Beyond Solar**

High temperature Thermo-PhotoVoltaics, for cars and other vehicles

• Electro-luminescent refrigeration (thermophotonic cooling)

and electro-luminescent heat engines.

• The automotive power market is 10× bigger than the solar panel electricity market.