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The Energy Transition

o Rapid changes are are taking place in the global
energy system

- Pollution concerns

- Climate change motivated reduction in greenhouse
gas emissions

- Lower cost renewable energy

- Plentiful and low cost natural gas
- Cheap oll

- Security concerns

o Rapid changes are likely to continue for many
decades



How Do We Make Good Choices?

o What's the best kind of battery for grid storage?

o What’s better — natural gas peakers or battery
storage”?

o How much should we subsidize renewable
energy?

o Batteries or fuel cells for transportation?

0 For new technologies, what aspects need to
Improve the most: efficiency, lifetime, materials, or
Cost?

0 What are the metrics we should use to decide that
one technology is better than another?



Costs May Not Provide All the Answers

o Un-priced externalities (e.qg. local
environmental impacts of mining materials for
energy devices)

1 Government subsidies mask true costs

o Early-stage technologies are too immature to
accurately estimate costs

o Co-benefits are not reflected in costs
o Short term supply excess and deficits

O ...



Energy Systems Analysis Can Help

1 Beyond component costs...

o Consider interactions and tradeoffs between
different parts of the energy system

- e.g. impact of electric cars on the electricity grid
o Consider co-benefits of various technologies
- e.g. pollution reduction benefits of renewables

o Consider the effects of multiple metrics on
technology performance

- e.g. roundtrip efficiency, cycle life, and depth of
discharge of a battery



Energy Systems Analysis Is Valuable at
Many Levels

Economy-wide global or regional
macroeconomic models of the energy

Integrated system (e.g. IGSM, GCAM, Message)
Bissessment model3

Geographically or technological
Bottoms Up Technology integrated energy sy_stems models

Integration Models (e.g. VICUS integrating electricity and
transportation sectors)

Full life cycle, materials,
Life cycle analysis manufacturing, use, recycle or
disposal (e.g. GREET)

Component Technology Technology systems models

Models or Metrics (e.g. IECM ) or metrics
(e.g. ESOI)



Three lllustrative Examples

o Sustainable growth of the PV and wind industries

o Grid scale electricity storage
- What'’s better for grid scale storage?
- Should we store or curtail excess renewable energy?

- How do we make batteries better for grid scale
storage?

- Can we sustain growth of the

o Natural gas or energy storage for backing up the
electrical grid?

And if there is time, some recent work on BEVs or FCVs for transportation.



Net Energy Analysis: Basic ldea

o It takes energy to make, operate and dispose/recycle
the devices/systems needed to produce energy.

n For a device/system to be useful to the global energy
system:

Energy output >> total energy inputs

Barnhart and Benson, 2013. On the importance of reducing the energetic and material demands of electrical energy storage.
Energy and Environmental Science, DOI: 10.1039/c3ee24040a.

M. Dale and S.M. Benson, 2013. The Energy Balance of the Photovoltaic (PV) Industry - Is the PV industry a net energy
provider? Environ. Sci. Technol. 2013, 47, 3482-3489.

Barnhart, Dale, Brandt, and Benson, 2013. The energetic implications of curtailing or storing wind and solar generated
electricity. Energy and Environmental Science, DOI: 10.1039/c3ee41973h.

Carbajales-Dale, M., Barnhart, C. J., & Benson, S. M. (2014). Can we afford storage? A dynamic net energy analysis of
renewable electricity generation supported by energy storage. Energy & Environmental Science, 7(5), 1538-1544.

Carbajales-Dale, M., Barnhart, C. J., Brandt, A. R., & Benson, S. M. (2014). A better currency for investing in a sustainable
future. Nature Climate Change, 4(7), 524-527.

Pellow, M. A., Emmott, C. J., Barnhart, C. J., & Benson, S. M. (2015). Hydrogen or batteries for grid storage? A net energy
analysis. Energy & Environmental Science, 8(7), 1938-1952.



Example: Photovoltaic Energy




lllustration of Net Energy Concepts
for a Renewable Energy Device
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Definitions

Embodied energy: Amount of energy to
manufacture and install a device

Cumulative energy demand (CED): total energy
Inputs over the life cycle

Energy return on investment (EROI): the sum of
the energy outputs compared to the cumulative
energy demand

Energy payback time (EPBT): time for the
cumulative energy outputs to be greater the
energy inputs
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Cumulative Energy Demand for PV
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Energy flows: single PV panel
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Energy flows: single PV panel
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And, the PV Industry is Growing
Rapidl
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A Growing Industry May be a Net Energy
Sink or Source
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The PV Industry Is Now a Net Energy
Producer
|
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Managing the Variability of Renewable
Energy
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Energy Storage for Managing Variable
Energy Resources

o Pumped hydropower (PHS)
o Compressed air energy storage

- Batteries
- Lithium lon (Li-lon)
- Sodium Sulfer (NaS)
- Vanadium redox flow battery (VRB)
- Zinc Bromine (ZnBr)
Lead-Acid (PbA)
O Hydrogen

- Alkaline water electrolyzer, compressed hydrogen
storage, and PEM Fuel Cell



A New Metric: Energy Stored on Energy
Invested (ESOI)
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But, the Round Trip Efficiency for
Hydrogen Is Much Worse

BS BN BN
(10°MJ) (10°MI) (10° MD)
RHFC? 592 9.92 1,973 59

LIB? 677 64 752 35

MNst— full system round trip efficiency

Why is the efficiency for the RHFC so low?

Nst = NMiyz *Neomp “Nre = 0.7 - 0.89-0.47 = 0.3
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How Do We Weight the Relative Import
of ESOI and Efficiency?
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Is It Worth “Paying for Storage?” and
Which Technology is Better?

Solar PV ( [EROI] = 8)
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Can We Afford Energy Storage in a
Growing Renewable Energy System?
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How Do You Make A Battery ™
Better for Grid Scale Storage? «-
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How Do Storage Options Compare to
Natural Gas Generation?
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Compare Options to U.S. Grid
Average
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ldentify Paths to Improvement
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Wind With Some Storage Is Much

Better than the Grid Average
e

00 Reduce Carbon Emissions Avoid

—_ — L ]

e US grid average

s (0.056,0.55)

@ 0.30 - ° JPPA

o3 CAES

o NaS

D ®

8 Li-lon

o ®

20.10 -

= VRB,

% resource

< B wind

- |

0.03

-8 [ Jpv

© [ .

o PHS _ M grid
® wind at 30% curtailment - 3s

® ®wind at 10% curtailment g

0.01 5 wind (direct to grid)
Do Today Improve EROle
| I

0.01 0.03 0.10 0.30
Electrical Energy Intensity (KWhg,, Per KWhygjivered)




Solar PV With Storage Has Higher Energy \
Intensity But Lower Carbon Intensity
N
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Avoid Storing Grid Power

T

Reduce Carbon Emissions Avoid
00 - Nas L PbA
CAES Li-lon .
PHS . © ) 4 VRB
< US grid average.
E (0.056,0.55) CAES boa
© 0.30 - o JPPA
o CAES
o NaS NaS
D ®
Ql , :
Li—lon Li-lon
8 o} VRB
20.10 -
gl VRB
2 ® PV at 30% curtailment
% PV at 10% curtailment PHS resource
€ PV (direct to grid) B wind
= |
0.03

-8 [ Jpv
© [ .
O PHS _ M grid

® wind at 30% curtailment - 3s

o *wind at 10% curtailment g
0.01 5 wind (direct to grid)
Do Today Improve EROle
| | 1 |
0.01 0.03 0.10 0.30

Electrical Energy Intensity (kWh,,,, per KkWh i ered)



Natural Gas... Mixed Story, NGCCS

IS Interesting
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Summary

Energy systems analysis provide new perspectives on
energy technologies and systems

... beyond cost

Provide a valuable tool during the global energy
system transition
Solar and wind are net energy producers
Pumped hydro and CAES are good options for storage
Other forms of storage are energetically expensive
Li-lon batteries are better than hydrogen for storage today
Batteries need to last longer
The hydrogen system needs to be more efficient

Natural gas generation provides a better option than some (not
all) alternatives for managing the variability of renewable energy



What's better, BEVs or FCVs?
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Los Alto Hills Case Study
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