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Abstract 
Market based valuation of generation assets is a critical problem in competitive power 
markets. Previous approaches to this problem has included modeling the cash flow from a 
generator as a spread option between electricity and fuel prices, which ignores the effect 
of flexibility and startup costs. Simulation based approaches with full unit commitment 
constraint have been presented, but they are computationally extremely demanding. 
In this report, a principal component based model for electricity prices is applied. It is 
shown how this approach can reduce the unit commitment problem to two stage dynamic 
programming (DP) problem. The information gained by solving the DP for possible 
electricity and fuel price states, is stored in a lookup table. This table is used to map 
simulated fuel and electricity price states to generator cash flow. As a result we are able 
to perform simulation based valuation of generators over multi-year periods, with 
minimal computational complexity.  



 
Introduction 
 
As the electric utility industry becomes more competitive, the question of how to value 
generation assets becomes critical. This problem is typically approached by defining the 
generator in terms of its efficiency (heat rate), in converting fuel to electricity. Based on 
this rating, the valuation is performed by modeling the generator as a spread option 
between the price of the fuel used and the price of electricity [Deng, Johnson, 
Sogomonian (1998)]. The payoff from such an option is given by, 
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where  e
kP is the price of electricity and C is the cost marginal cost of production as a 

function of fuel price f
kP . 

The problem with this formulation is that it ignores several important constraints 
involved in the operation of the unit, such as start-up and shut down costs, minimum run 
time, and maximum ramp rate [Tseng, Braz (1998)] . These constraints have a significant 
effect on how units are bid into, and dispatched by, a spot market operator, and therefore 
on the owners cash flow. By ignoring the unit commitment constraints, one is likely to 
undervalue plants with significant flexibility (such as micro turbines and fuel cells) while 
overvaluing large inflexible fossil plants. 
The reason why the unit commitment problem is often ignored in the valuation of a 
power plant can be linked to computational complexity. In general the operator of the 
unit has to solve a complex dynamic programming problem to arrive at the optimal unit 
commitment decision for the generator [Eric, Ilic (1999)]. This is a computationally 
intensive problem with polynomial growth over the time horizon over which the 
optimization is carried out. Therefore while it is feasible to solve the unit commitment 
decision for a day ahead bidding problem [Tseng, Braz (1998)], it is extremely 
challenging to extend this notion to a multi-year valuation problem. 
In this working paper, we propose a new method for valuing generation assets with unit 
commitment constraints, using a principal component based model for spot price 
described in details in [Skantze, Gubina, Ilic (2000)]. The effectiveness of the principal 
component representation comes from being able to determine the hourly prices within 
each day. This is qualitatively different from using a single daily spot price, which does 
not recognize intra-day price variations. By applying principal components, we are able 
to define the today’s net profit from the generation asset as a function only of today’s and 
yesterday’s average spot price. By storing the mapping from the state of the spot price to 
the cash flow of the generator in a lookup table, we are able to simulate generator profits 
over multiyear periods with minimal computational complexity. 
Next we introduce a stochastic model for the fuel price. This adds a third dimension to 
our lookup table, but still allows us to simulate the cash flow for the generator with a 
computational time growing linearly with the length of the valuation period. 
The principal component based model is applied next to the problem of hedging 
generation assets. By defining the daily cash flows from the unit as a derivate of fuel and 
electricity prices, we can derive optimal strategies for trading in fuel and electricity 
forward markets in order to manage generation risk. 



 
A Principal Component Based Price Model for Electricity Spot Markets 
 
The price model used is a simplified version of the bid based price model introduced in 
[Skantze, Gubina (2000)]. We define a daily [24*1] price vector e

dP , whose elements are 
the 24 hourly electricity prices. Next we define the log of the price vector to be the sum 
of a deterministic and stochastic component. The deterministic component is composed 
of a monthly vector mµ , which captures the seasonal characteristics of the electricity spot 
price. The stochastic component is modeled as the product of the principal component 
vector mv , and a daily stochastic scalar weight wd. The principal component captures the 
shape of daily price variations from the seasonal mean mµ , while the weight describe the 
magnitude of the deviation as well as its correlation over time. The log of the vector of 
spot market prices can be written as: 
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Next we model the process describing the evolution of the weights e
dw . We choose a 

two-factor discrete time mean reverting process. This captures important features of 
electricity markets such as short-term mean reversion and long term stochastic growth. 
For an in-depth discussion of modeling electricity prices, please see [Skantze, Gubina 
(2000)]. 
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The form of the price process postulates that hourly spot prices will be log-normally 
distributed. Furthermore prices inside of a day are perfectly correlated, since they are a 
function of a single daily random variable wd. This reduction in complexity is made 
possible by choosing the principal component in an intelligent manner. 

Formulating the Unit Commitment Decision 
To calculate cash flow in a one-day period, firstly a generator solves a unit commitment 
problem in order to determine when a unit is turned on or off optimally. The one-day 
cash flow is the expected sum of profits from operating in each hour. Let )(xCF 0d  be 
cash flow at the d day,  
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Rewrite this optimization in a Dynamic Programming (DP) framework, adopted from 
Eric, Ilic (1998) as the following: 
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The optimal policy is applied to obtain the maximum expected profits. The above 
problem is a full-blown version in which there are several sources of uncertainties. The 
first one is from electricity spot prices e

ms , and the second one is from fuel prices. 
 

Approximation of Price Model Used in Unit Commitment 
When solving the unit commitment bidding problem, we use an approximate version of 
the price process. In the full-blown model we can write next days weight as a function of 
today’s states: 
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We here assume that 1a e << , and dee ss >> . We only use this assumption when 
formulating the day ahead bidding strategies. With this assumption we can write the 
weight process as: 
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This effectively states that in the very short term (day ahead) we can ignore the mean 
reversion as well as the long term volatility. It should be noted that we only use this 
assumption to arrive at a bidding strategy. When simulating future spot price for 
valuation purposes we use the full blown version of the price model. 
 
 
Therefore, we can simplify the above unit-commitment by assuming that  
1) maxk qq = , 

2) in a one-day period, f
d.kP  is given k∀ , 
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Creating a Lookup Table of Cash flows 
 
We have shown how to calculate cash flow and a on/off policy for a generator in a given 
day d. This cash flow is an expected cash flow, given id,d w~w~ = .  id,w~  is a sample value 

of dw~ , which is continuously normally distributed with ( e
1d ?w~ +− ) mean and standard 

deviation e
ms . To create a lookup table mapping a pair )w~,w~( i1,djd, −  to a cash flow, we 

generate jd,w~  given i1,dw~ − ; and apply the optimal policy )w~p( i1,d −  to determine the cash 

flow in the d period with jd,w~ , or e
jd,P . Therefore, in period d, we have 
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Repeating this process using i1,dw~ −  for other i, one obtains a cash flow matrix which an 

element (i,j) is a cash flow associating with both jd,w~  and i1,dw~ − .  This matrix captures 
possible cash flows in a given month m with a simplified price process of each day d.  
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For each month m, a cash flow matrix can be calculated by using in the same method. 
Note that each cash flow matrix is obtained by assuming a constant fuel price f

kd,P  for all 
k and d within each month m. 

}?P|CF,CFCF{ f
l

f
kd,122,1, =K  

Incorporating Stochastic Fuel Prices 
Next we propose a model which will allow us to include stochastic fuel prices. We here 
assume that we are dealing with a gas-fired plant, but the model is equally applicable to 
oil or coal. Since gas is a storable commodity, it experiences less short-term volatility, 
and very little intra-day volatility. We will therefore make the following assumptions. 

1. There is only as single daily gas price f
kd,P . 

2. In the unit commitment decision, the day ahead gas price is assumed to be 
forecasted with near-perfect accuracy (i.e. assumed to be deterministic).  

Next we postulate a model for the daily gas price. The log of the price is written as the 
sum of a deterministic seasonal and a stochastic component. 
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Note that we do not need to apply the principal component approach since the price is a 
scalar. The stochastic component is described by a two factor mean reverting model. 
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where, 
f
d

f
d

f
d dwe −=  

To apply this model we first need to expand the lookup table to include gas price as a 
third dimension. Note that the assumption that unit commitment takes the day ahead gas 
price as deterministic allows us to add only one rather than two dimensions to the lookup 
table. 
We now generate simulated paths for future w’s for electricity and gas. The lookup table 
converts this into paths of future cash flows. 
 
To capture the dynamic of fuel prices which is assumed to vary on a monthly basis, we 
create a set of cash flow matrices with different fuel prices, obtaining  
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Note that we can generate N samples of w of fuel prices to create an N)N(N ××  cash 
flow matrix for each month m. This matrix completely captures uncertainty due to both 
electricity and fuel prices. 
 
 



 
Linking Simulated Prices to the Lookup Table to Generate Simulated Cash 
Flows 
 
Once the lookup table has been created, we can use the full blown price model to 
generate simulated weights. The lookup table is then used to generate a path of cash 
flows from a path of weights. The simulation time is linear in the length of the valuation 
period. Furthermore we are not restricted to the proposed model for generating weights. 
The lookup table can be linked to any stochastic model which produces weights for the 
principal components. 
 

Generation Asset Valuation 
 
Value of a generator V is an expected sum of discounted cash flows during the period of 
valuation.  
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Where r is a discounted factor, in which 1r0 << , and D is a period of valuation (such as 
a 15-year period or a 15*365-day period). 
  
There are two valuation methods that we consider here:  

1) A Monte Carlo Simulation Method 
a) M paths of )w,(w de  are generated. 
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b) For each path i of ife ]w,[w , each cash flow is obtained by choosing a cash 
flow associated with each pair of if

j
e
j ]w,[w  from the lookup table. The value of a 

generator if e
jw and e

jw  follow path i is the sum of discounted cash flows. 

)w,(wCF(r)V f
d

e
d

D

0d

i
d

di ∑
=

⋅=
 

c) Value of a generator is equal to  
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2) A Multinomial Tree Method 
 
Instead of using Monte Carlo simulation, we can use a multinomial tree method. The 
simplest version of the tree method is a binomial tree one. A binomial tree can be 
used in the case one source of uncertainty exists. For example, if gas prices are 
known at any time d, the only uncertainty in generation asset valuation comes from 



electricity prices.  Each node on a tree associated with a day d. At the end of each day 
d, ie,

dw  either goes up with probability p to be 1ie,
1dw +

+ or goes down with probability 1-p 

to be 1ie,
1dw −

+ .  Hence, at each node a cash flow associated with e
dw  ( 1ie,

dw +  or 1ie,
dw − ) 

conditioned on the previous node ie,
1dw −  is simply obtained from the lookup table. We 

expand the tree from a single node on day 0 to 2N nodes on day N. The value at each 
node i on day d i

dV  is the expected sum of discounted cash flows of the next adjacent 

nodes, plus the cash flow associated with ie,
dw  incurred at that node. 
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Figure 1. A Binomial-Tree Representation 

 
For a case of more than one sources of uncertainty, two additional branches will be added 
to capture each additional source of uncertainty.  This will make the problem become 
more complex since nodes grow exponentially with time. A Monte Carlo approach might 
be more applicable to deal with more than one sources of uncertainty. 



 
Conclusion 
As shown in this report, the day-ahead process of deciding on an optimal commitment 
strategy for generation assets with unit commitment constraints under uncertain fuel 
prices, is an extremely complex problem. While in theory one can value a unit by simply 
extending this commitment decision for a multiyear period, by simulating a rang of 
possible fuel and electricity price paths, this approach is extremely computationally 
demanding. The use of principal component theory in price modeling recognized that 
there are dominant patterns in the hourly price deviations within a day. These patterns 
can be exploited to reduce the number of random variables in the unit commitment 
decision, and greatly reduce the computational complexity of the problem. We have 
illustrated how we can characterize the day ahead bidding strategy of a generator as a 
function of three states, representing electricity and fuel prices. This leads to the creation 
of a lookup table which effectively stores all information relating to the unit commitment 
problem. Ones this lookup table is created, the problem of valuing the generator is trivial, 
since all we have to do is to generate simulated price paths for fuel and electricity prices. 
The approach is extremely computationally efficient and allows us to simulate the value 
of generation assets over multi-year period. 
The contribution of this report is to present a computationally feasible valuation method, 
which will allow users to differentiate between technologies based on flexibility as well 
as fuel efficiency. The authors believe that this will have significant impact on the 
investment choice in the new industry both on a whole-sale and distribution level. 
 
 
 



 
Appendix: 
              

 
Figure 1. Principal Component Representation of a Typical Daily Price of Electricity1  
 
 
 

Figure 2a. A Typical 24 Hour Basis for Representing Daily Price of Electricity (Hour 1). 
 

 

                                                 
1 Data is obtained from Petter and Gubina (2000). 
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Figure 2b. A Typical 24 Hour Basis for Representing Daily Price of Electricity (Hour 
23). 

 

Figure 3 Average Spot Price of Electricity and Spot Prices of Electricity 
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