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Abstract 
The deregulation of the electric utility industry has brought with it a great deal of 

financial uncertainty for market participants. In this report we address the question of 
how participants can use available markets in order to mitigate this risk. In order to 
develop effective strategies for trading, one must first have a good understanding of the 
dynamics of prices on all available markets. We therefore begin by addressing the 
relationship between financial and physical, spot and forward markets. In doing so we 
examine the arbitrage pricing theory approach to modeling forward prices, and evaluate 
its relevance for non-storable commodities. From the basic relationships between the 
markets, we arrive at stochastic models which quantify future uncertainty in the 
marketplace. 

Next we consider the case of a load serving entity serving load under a standard offer 
contract. We show how the stochastic models for load and spot prices allows us to 
quantify the risk exposure of the LSE. Next we formulate the problem of how an LSE can 
optimally manage its risk using a periodically rebalanced forward portfolio, based on a 
mean variance objective function. We show that by using the proposed price models, we 
can convert the problem into a dynamic programming formulation, which can be solved 
with a number of  computationally efficient tools.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



1 Introduction 
Competitive power markets exhibit a level of price volatility unparalleled in traditional 

commodity markets. The reason for this behavior lies in the nature of how electricity is 
produced and consumed, including lack of storage, inelastic load, and strong seasonal 
effects on multiple time scales. These characteristics of supply and demand are reflected 
in the dynamics of market prices, and specifically in the joint dynamics of spot and 
forward prices. This interaction is of tremendous interest to market participants who wish 
to use the forward markets to manage their financial risk. 

In this report we address the relationship between financial and physical, spot and 
forward markets. In doing so we examine the arbitrage pricing theory approach to 
modeling forward prices, and evaluate its relevance for non-storable commodities. From 
the basic relationships between the markets, we arrive at stochastic models which 
quantify future uncertainty in the marketplace. These models are then be applied to the 
problem of dynamic hedging of physical and financial obligations in electricity markets. 

2 Power Markets 
There are three fundamental markets available for trading electricity. The Spot Market 

(day ahead), the physical forward or bilateral market, and the financial forward or futures 
market. While there is no exact mapping between prices across these markets, there is a 
strong interdependence. We here examine the interplay between the markets, and attempt 
to define credible models for the joint evolution of prices. 

2.1 The Spot Market 
The spot market is conducted by either a power exchange or an ISO. Participants 

submit bids, generally on a day ahead basis, and the market maker clears the market and 
announces and hourly locational system price. Trade on this market is physical, meaning 
that physical deliver is always expected. Participants who default on a physical contract 
will be charged a penalty which is normally dependent on the price of real-time or 
balancing power in that region. 

2.2 The Physical Forward Market 
Physical forwards can be traded on an exchange or in a bilateral manner through over 

the counter (OTC) transactions. Exchange traded forwards use standardized contracts, 
with power being traded in monthly on- and off-peak blocks (see CBOT definition of 
power contract). The contract specifies a single MW quantity (q) and a single $/MWh 
price (F). The short position (seller of the forward contract) is obligated to physically 
deliver power at a constant rate q to a location specified in the contract (the HUB). The 
contract does not specify the location at which the power is produced or consumed, but 
states that the short party is responsible for delivering the power from the generator 
location to the HUB, and the long position is responsible to deliver the power from the 
HUB to the load location. For both sides this may involve purchasing additional 
transmission contracts, or purchasing/selling power through the spot market. Such 



provisions are not addressed in the contract, and the relative prices of the spot and 
transmission market will not affect the price of the forward contract. 

The price of exchange traded physical forwards is quoted daily by the exchange. The 
information provided includes the high and low prices as well as the volume traded and 
the volume of open interest. The exchange quotes prices for every delivery month up to 
15 months into the future. This vector of prices G(t), which constantly evolves new trades 
become public, make up the forward curve for electricity. 
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Physical forward contracts trade continuously while the exchange is open, until the 
fourth business day prior to the first delivery day of the contract. At this point trading 
terminates, and any party left with a short position is required to deliver power according 
to the provisions in the contract. A trader can avoid this by ‘booking out’ his position, 
purchasing a long position which exactly offsets his short position for the same delivery 
month. 

2.3 The Financial Futures Market 
Financial futures contracts for electricity are traded on exchanges such as NYMEX 

and CBOT. Financial contracts are similar to exchange traded physical contract in 
structure. The main difference is that the parties entering into the contract have no 
intention of physically producing or consuming the power, but rather use it as a financial 
hedge against other positions in the market. The financial futures contracts are therefore 
settled trough the exchange of cash rather than power. In general the payoff function for a 
party holding the long position in a forward contract is given by: 

),()( TtFSlongpayoff T −= , 
where ST  is the spot price at the maturity T, and F(t,T) is the price of the futures 

contract at the time t it was entered into. The problem which occurs with electricity is that 
the delivery period for the futures contract is one month, while the underlying spot 
process is updated on a  day ahead basis. As a result, when the futures contract matures 
on the 4’th business day prior to the first day of the delivery period, the sot prices for 
hours in the delivery month are not yet known. Hence the contract cannot be settled 
financially at this time. To circumvent this problem, exchanges have taken on two 
different approaches, ex-post settling and ex-ante settling. 

Ex-post settling: In this approach, the futures contract is settled gradually settled 
during the delivery month. If two parties have entered into a futures contract for q MWs 
of  on-peak power at a price F, then for every day for the duration of the delivery period, 
the following process determines the cash flow: 



1. The on-peak price of power for the day is calculated by averaging the hourly price 
of the 16 on-peak hours from the day-ahead spot market. We denote this prices 
Ppeak

. 
2. The long position (buyer of contract) will pay the difference between the Ppeak

 and 
F times the quantity of the contract, times the number of on-peak hours (16). If 
this quantity is negative then the cash flow will be from the short position to the 
long position. 

The total cash flow for the long position over the duration of the delivery month is 
given by: 
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where n is the total number of days in the delivery period. 
Ex-ante settling: In this case, the futures contract is settled financially at its expiration 

date, ie. on the 4’th day prior to the beginning of the delivery period. Since the day-ahead 
spot price is not yet known for the delivery month, the price of a physical forward 
contract for the same delivery period and location is used in place of the day-ahead 
spot. This effectively is a change in the underlying commodity from which the futures 
contract is derived from a derivative the spot market to a derivative on the physical 
forward market. The payoff function for the long position at maturity T is given by: 
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 where q is the quantity of the contract in MWs, G(T,T) is the price of a physical forward 
on the last day of trading, and F is the price at which the futures contract was purchased. 

Both the day-ahead spot and physical forward are based on the same commodity, 
electricity delivered at a specific grid location. However there is no simple mapping 
between the  ex-post average spot price and the ex-ante physical forward price. This is a 
very crucial point to understand in electricity markets. While the settling procedure 
differs form market to market, the dominant trend seems to be in the direction of ex-post 
settling, as seen in California and Nordpool. Unless otherwise specified we will from 
here on assume that financial forwards settle ex-post.  

2.3.1 Arbitrage Pricing and Price Convergence 

Arbitrage pricing theory (APT) [6] is based on the belief that pure arbitrage 
opportunities cannot survive in competitive markets. This assumption imposes constraints 
on the manner in which prices coevolve in the market. We consider this approach as it 
relates to three types of assets: stocks, storable commodities, and electricity. We adapt the 
following definition of arbitrage.  

Consider a market with n tradable assets, each with price Xi(t). A portfolio ∏ is build 
by purchasing and selling these contracts. The value of the portfolio is given by: 
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where wi represents the quantity of asset i in the portfolio. W’s can be negative if the 
market allows short-selling. Since future asset values are uncertain, the value of the 
portfolio at t>t0 is a random variable.  

We define an arbitrage opportunity as follows. Arbitrage exists if at time t0 we can 
construct a portfolio ∏ with the following properties: 
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This means that we can construct a portfolio with zero cost, which has zero probability 
of decreasing in value and a strictly positive probability of increasing in value. Since the 
portfolio has zero initial cost, any market participant can purchase an unlimited amount 
of the portfolio, and enjoy a risk free guaranteed profit. The theory is that as arbiters start 
to take advantage of this opportunity, they will create an upward price pressure on assets 
with positive weights in the arbitrage portfolio, and downward price pressure on assets 
with negative weights. Prices will then reach a new equilibrium where the arbitrage 
opportunity no longer exists. 

2.3.2 Application of Arbitrage Pricing Theory (APT) in Electricity Forward and 
Futures Markets 

We now address the relative prices of physical forward and financial futures contracts 
with ex-post settling, in the framework of arbitrage pricing as defined in the previous 
section. We allow for the contract to be traded on different exchanges, but assume that 
there is reasonable price transparency and liquidity in the market. The validity of these 
addressed at the end of the section.  

Recall that the notation for the price of a physical forward contract signed at time t for 
delivery at time T, is denoted by G(t,T). The equivalent notation for a financial futures 
contract is F(t,T). We now consider possible relative price levels of the physical and 
financial markets, and test their consistency with the absence of arbitrage assumption.  

First consider the event where at a time t, we observe a set of contracts for delivery 
month T satisfying the relationship, 

),(),( TtGTtF >  
A trader can then implement  the following strategy.  
At time t: 

1. Purchase q MW of physical forward contracts. 
2. Sell q MW of financial futures contracts. 

At time T: 



1. For each hour in the delivery period, submit a sell bid of q MW of power into the 
day ahead spot market at zero price. The power needed to deliver from the spot 
market is received from the physical forward contract. 

The cash flow from this strategy in each time period is shown in the table. Note that 
all cash flows from forward contracts are realized at the end of the contract. 
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This strategy provides a guaranteed profit with zero investment, and therefore it is an 

arbitrage opportunity which cannot be sustained. 
Now consider the case, 

),(),( TtGTtF <  

The trader adopts  the following strategy. 
At time t: 

1. Purchase q MW of financial futures contracts. 
2. Sell q MW of physical forward contracts. 

At time T: 
1. For every hour in the delivery period, submit a buy bid for q MW to the day-

ahead spot market at the market maximum price (we later discuss what happens if 
the spot market fails to clear). The electricity purchased in the spot market is used 
to deliver against the obligation from the physical forward contract. 

The cash flows in each time period is given by: 
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sell physical 0 - ),( TtNqF  

buy financial 0 
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This strategy provides a guaranteed profit with zero investment, and therefore it is an 

arbitrage opportunity which cannot be sustained. 



The strategies presented above show that in a market free of arbitrage opportunities, 
the price of a financial forward cannot deviate from the price of a physical forward, in 
ether a positive or negative direction. This condition must hold true not just at maturity, 
but during the entire lifetime of the contracts. We thus arrive at the first constraint for 
electricity derivatives in an arbitrage free marketplace: 

TtTtFTtG ,  ),(),( ∀=  

2.3.3 Limits to Arbitrage Pricing Arguments 

While APT provides a convincing argument why physical and financial forward prices 
must be equal at all times, actual observations in the market place show that the two 
market can diverge at times. The reasons for this inconsistency can be found in the 
assumptions underlying the arbitrage argument. The following points illustrates how 
market realities deviate from the theory: 

1. Moving Equilibrium:  Arbitrage pricing theory is based on an equilibrium 
argument. It states that in a market with active arbitruers, a set of prices which allow for 
risk-free profit with zero investment is not sustainable.  As traders execute the arbitrage, 
they gradually alter the relative prices until the system settles into an arbitrage free state. 
Markets in general, and electricity markets in particular, are continuously evolving 
dynamic systems.  The effect is similar to that of a feedback control system driving the 
states of a system towards a continuously changing control input. Unless the input signal 
evolves at a significantly slower rate, the states will never settle to their equilibrium 
value. 

In the case of electricity markets, the validity of the equilibrium argument will depend 
on two factors: 

1. The rate at which new information about the future expected value of the spot price 
enters into the market. Changes in traders perception of the future is the driving input into 
the futures market. Information which would cause traders to change their perception 
would include updates on future weather/load conditions, or news of a generator or 
transmission line outage. 

2. The volume and rate at which contracts are trading in the market. This represents 
the magnitude and speed of the feedback response, or the rate at which the market can 
react the new information. This is also known as a market’s liquidity. 

We address this issue in more detail as we introduce our dynamic model for the 
evolution of the spot price. 

2. Uniqueness of Prices: Unlike the spot market, the forward markets do not have a 
unique clearing price. The price quoted by the exchange is a weighted average of all 
trades in the last day. However there is no guarantee that the trader can find a counter-
party willing to trade at exactly this average price at the time the arbitrage is executed. 
There generally is a gap between the highest price the market is willing to buy, and the 



lowest price the market is willing to sell at. This is known as the bid-ask spread. The 
magnitude of the bid-ask spread is dependant on the liquidity of the market. 

3. Transaction Costs: Exchanges are generally for profit enterprises. They make a 
profit by charging a small fee for every contract which is executed on the exchange. The 
loss incurred by the trader due to such fees is known as a transaction cost. In electricity 
markets, exchanges generally charge a fixed fee per MWh of power covered in the 
contract. In order to execute an arbitrage, the guaranteed profit must be greater than the 
total transaction cost incurred. The magnitude of the transaction cost is relatively minor. 
Nordpool for example charges approximately one cent per MW traded in a futures 
contract. 

4. Market Failure: In designing the arbitrage strategies we assumed that a zero sell 
bid and max buy bid into the spot market is always accepted. There are situations where 
the spot market would be unable to deliver additional power at any price due to shortage 
of generation assets or system security constraints. In such a case the spot market would 
fail to clear as the aggregate demand and supply curves do now intersect. Under such 
circumstances there are default conditions specifying the charge/payment to be made to 
each market participant. In the context of forward markets, the contracts often have a 
clause for liquidated damages in the case of  market failure. The party failing to deliver 
on a physical obligation must pay whatever financial damage is incurred by the opposing 
party to replace the power, or any penalty incurred by the opposing party for failing to 
deliver on its subsequent obligations.  

Similar clauses for liquidated damages can be included in financial forwards, thus 
effectively hedging the trader against market failure.   

2.4 Relationship of Spot and Forward Markets  
So far we have considered the relationship between physical and financial forward 

contracts. Under the arbitrage free assumption it could be shown that prices in the two 
markets have to be equal at all times. Now we consider the relationship between the 
forward price and the spot price. We apply arbitrage pricing theory to three markets, 
equity, storable commodities and electricity, to illustrate how the characteristics of the 
underlying asset changes the pricing model. 

2.4.1 The price of a forward contract on a stock 

 Assume the current price of the stock, which pays no dividends, is St and the risk free 
interest rate is r, continuously compounded. The price of a forward contract on the stock 
(F(t,T))  with delivery date T must then be er(T-t )St. To see why this is true consider the 
following cases: 
1. If F(t,T)> er(T-t )St, the investor should sell one forward contract, borrow St  dollars at the 

risk free rate (assuming this is possible), and buy one unit of stock. The net cash flow 
at time t is zero. At time T, the investor delivers the stock against the forward 



contract, receives F(t,T) dollars as payment for the forward, and er(T-t )St dollars to pay 
off his debt. The net cash flow at time T is F(t,T)-er(T-t )St>0. This is a pure arbitrage 
opportunity, which cannot be sustained in an efficient market, and therefore sets the 
upper limit to the forward price. 

2. If F(t,T)< er(T-t )St, the investor should buy on forward contract, short-sell one stock, 
and lend St at the risk free rate. The net cash flow at time t is zero. At time T, the 
investor pays F(t,T) and receives deliver of the stock from the forward contract. He 
uses this stock to repay his short-selling obligation. He also recovers er(T-t )St from the 
money lend. The net cash flow is er(T-t )St-F(t,T)>0 . This is again a pure arbitrage 
opportunity, setting the lower limit for the forward price. 

In this case the upper and lower limits on the forward price are identical, and 
therefore, in an efficient market where participants can borrow and lend at the risk free 
rate, the forward price must be given by: F(t,T)=er(T-t )St. This illustrates two important 
points. First, under no-arbitrage conditions, the forward price of  a stock is a deterministic 
function of the spot price and the time to maturity (T-t). Second, there is a smooth 
convergence of the spot and forward prices at maturity. 

2.4.2 The price of a forward contract on a storable commodity 

 Assume the current unit price of the commodity is St, the present value of the total 
cost of storage incurred during the length of the futures contract is U, and the risk free 
interest rate is r. The lower bound on the futures price for delivery at time T is 
F(t,T)>(St+U)er(T-t ). If this does not hold, an investor can receive a risk-free profit by 
borrowing St+U at the risk free rate, purchase the commodity and pay off the storage 
cost, and short a forward contract in the commodity. The cash-flow at time t is zero, and 
the cash-flow at time T is F(t,T)-(St+U)er(T-t )>0. This is known as cash and carry 
arbitrage. 

Payoff at each time step from cash and carry arbitrage: 
 
 t T 
Buy commodity to be delivered 

against forward contract. 
-St  0 

Sell forward contract 0 F(t,T) 
Pay storage cost -U 0 
Borrow now, repay at maturity St+U -(St+U)er(T-t ) 

Total Cash Flow 0 F(t,T) -(St+U)er(T-t)>0 
 
Cash and carry arbitrage establishes an upper lower on the forward price of the 

commodity. The bound converges to the spot price as we reach maturity (T=t), and hence 
if the forward price is consistently lower than the spot price then the two prices must 
converge. 



The effects of cash and carry arbitrage can also be interpreted as a dynamic 
relationship between spot and forward prices. Assume that at time t we observe a forward 
price F(t,T), which violates the upper bound imposed by APT. We would expect the 
following behavior in the market. 

1. In the spot market, demand will increase, as arbitreurs rush to buy the commodity 
in order to store it. This put upward pressure on the spot market price. 

2. On the forward market, the same arbitreurs sell forward contracts in order to 
execute the arbitrage, creating downward pressure on the forward price. 

Now consider the reverse condition, when forward prices drop below spot market 
levels. In this case, no pure arbitrage strategy is present, since it may not be possible to 
short sell a physical commodity on the spot market. However, consider the position of a 
market participant who is currently holding an inventory of the commodity. For this 
person, the optimal strategy will be to sell the inventory today, and purchase cheap 
forward contracts which can be used to restore the inventory at a later date. If there is 
significant inventory in the market, this will put downward pressure on the spot price, and 
upward pressure on the forward price. 

One can question weather the bounds set by APT under realistic market conditions. 
This is especially true for commodities with thin forward markets and high transaction 
cost. However, weather or not the bounds are quantitatively accurate, the qualitative 
interaction between spot and forward prices can certainly be observed. 

1. An increase/decrease in the forward price will put upward/downward 
pressure on the spot price. 

2. A spike/drop in the spot price will put upward/downward pressure on the 
forward price. 

 Consider the following scenario. Tomorrow OPEC announces that it will reduce its 
annual production of oil by 50%. Base on these news, the forward price of oil increases 
sharply. Next, arbitreurs recognize the disparity between spot and forward prices, igniting 
a buying spree on the spot market. This causes an immediate spike in the spot price of oil. 
The above scenario illustrates an interesting characteristic of storable commodities 
markets. The relationship between the state of physical production and consumption 
on one hand, and the spot market price on the other, is non-causal. In other words, a 
future drop in production leads to a spike in today’s spot price. Note however that the 
relationship between the spot price and the information flow is still causal. That is, the 
spot market will only react when the drop in future production becomes known to market 
participants. 

 
The need to model the dynamic relationship between the spot and forward prices in 

storable commodities has led to the notion of convenience yield (y) which is defined as: 
( )( )tTyr
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The convenience yields represents the premium the market is willing to pay in order to 
physically hold the commodity today, rather than a promise for delivery at time T. We 
can model y as a deterministic parameter, or a stochastic state of the system depending on 
the market. 

2.4.3 The price of a forward contract for electricity  

It is easy to see that cash and carry arbitrage is not possible for electricity. To execute 
the arbitrage one would need to purchase electricity at time t, store it somewhere, and 
deliver it against a forward contract at time T. Since electricity is not storable one cannot 
execute this type of arbitrage. As a result, the dynamic relationship between the spot and 
forward price described above does not hold for electricity. A good example is the case of 
schedule unit outages. If it were announced today that a major nuclear plant in New 
England would be out of commission for the month of July, this would cause an 
immediate increase in today’s price of a forward contract with delivery in July. However 
it would have no effect on the current spot price. We can therefore state that electricity 
spot prices are causal in the state of production and consumption of electricity. This 
will have a tremendous impact on how we model electricity spot and forward prices. 

Without the ability to execute an arbitrage between the spot and forward markets, APT 
is useless in predicting the relationship between the two markets. Instead we have to 
address the forces underlying the demand and supply in forward markets. One approach 
is to assume that the market as a whole is liquid enough that every participant holds a 
small fraction of the total risk. As a result the market effectively behaves in a risk neutral 
manner, even if the individual participants are risk averse, allowing us to pose the 
relationship, 

{ }Tt SETtF =),( . 

The risk neutral formulation is the basis for most risk management and option pricing 
theories in commodities markets. The problem with this assumption is that electricity 
markets are relatively illiquid, with a small number of participants. In light of this we 
here propose a more general model allowing for the existence of a risk premium in the 
market. We model the forward price as a function of the spot price, the variance of the 
spot price, and a random disturbance (zF), 

)),(var),((),( F
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The exact structure of the forward risk premium is likely to vary from market to market.  

3 Dynamic Hedging 
3.1 Motivation 

We consider the situation where a load serving entity (LSE) has obligated itself to 
serve a group of customers at a fixed rate. The contract is set up in such a manner that the 
customers may consume may consume as much or as little power as they want at any 
time without additional penalties. This setup is similar to the current ‘standard offer’ 



contracts being offered to retail electricity customers. Furthermore we impose the 
constraint that the LSE owns no generating assets but purchases all power from the spot 
market. This exposure to the spot market leaves the LSE with significant financial risk. 
To mitigate this risk it can purchase financial futures contracts on electricity through the 
commodities exchange. We will here address the problem of how to generate an optimal 
trading strategy for the LSE in the futures market. 

3.2 Problem Formulation 
We will now generate mathematical models for the financial risk faced by the load 

serving entity. This will include modeling the stochastic behavior of loads, spot prices, 
and futures prices. The notation used is summarized in the table below. 

 
R Fixed rate for customer (standard offer) ($/MW) 
Sk Spot price in day d. 
lk Total amount consumed in day d (MW) 
Fti,T   Price of a forward contract for delivery in month starting at T, as 

seen at the time of purchase ti ($/MWh) 
qti,T  Total quantity of forward contracts purchased for delivery month 

starting at T (MW/h) at time of purchase ti. 
M total number of days in a month 
N number of months in the hedging period 
T Starting day of hedging Period 
 
We begin by modeling the cash flow for the LSE before any purchases in the forward 

market. This is the unhedged cash flow (CFU). 
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For simplicity we will here consider the case where the hedging period is a single 
month. The cash flow function then becomes: 
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Next we consider the cash flow incurred from a portfolio of forward contracts qi,m. 
This is the cash flow of the hedge CFH. 
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The index tj represents points in time when we allow the LSE to purchase forward 
contracts. Since a forward contract Ft,T  cannot be purchased after the starting date of the 
delivery month (T), we include the constraint ti≤T. The timeline of the hedging process is 
shown in figure 1. 



t0 t1 t2 tH-1 T T+M

hedging period delivery period

t0 t1 t2 tH-1 T T+M

hedging period delivery period
 

Figure 1 
 
The hedging period [t0,T] is divided into H hedging intervals of equal length. The 

number of hedging intervals used will generally depend on the transaction cost and 
liquidity in the forward market. 

Finally we consider the total cash flow for the hedged LSE (CF). 
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Not that the forward contracts have no cash flow prior to the delivery period, therefore 
CF is equal to the total profit received by the LSE.  

As seen from the start of the hedging period, ld, Sd, and Ftj,T , are all random variables. 
We therefore define a value function Vt i denoting the expected profit seen by the hedger 
at each step ti in the hedging period. 
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or in expanded form, 
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Vt0 represents the initial expected return of the unhedged portfolio. The objective of the 
hedging strategy is to maximize the expected value of the portfolio while minimizing the 
risk (or variance) of the return. We define a mean variance objective function [8]as, 
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3.3 Underlying Stochastic Models 
To solve the stochastic optimization problem formulated above, we require specific 

information about the joint probability distributions of load, spot prices, and forward 
prices. To arrive at these distributions we postulate stochastic models for the time 
evolutions of the random variables. The models described below are simplified versions 
of the full blown bid based price model described in [1], and generates daily spot prices. 
The model mimics the supply and demand bids into the spot market. Demand bids are 
assumed to be inelastic, while the aggregate supply bid curve is modeled as a time 
varying exponential function. The stochastic processes describing the time evolution of 
the load and supply states are all Markov, reflecting the temporal relationship between 



spot market price and supply/demand states discussed in earlier sections. Another key 
aspect of the model is the link between load and price dynamics. This accounts for the 
correlation between load and price uncertainty when formulating the hedging strategy. 

Spot price Model: 
dd bal

d eS +=  

Load Model: 
l
d

l
d

bl
dd zlll σµα +−=−+ )(1  

Supply Model: 
b
d

b
d

bb
dd zbbb σµα +−=−+ )(1  

Forward Price Model: 
{ } { } F

d
F

TdTdTd zSpSEF σ++= var,  

where, 
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Note that vart(ST) is a deterministic function of (T-t), and can therefore be thought of 
as a parameter of the model. Specifically we write: 

)](var),...,(var),([var 21 Ntttttt SSS +++=η  

We can express this function in terms of the state vector xd, 
[ ]dd

T
d blx = , 

the output vector yd, 
 [ ]dTddd

T
d VFSly ,= , 

the control variable corresponding to forward market purchases, 
 Tdd qu ,=  

and stochastic inputs, 
 [ ]F

d
b
d

l
d

T
d zzzz = . 

We also define a vector of parameters θ, 
],,,[ ,,,,, ησαµθ pFblblblT =  

We can now write the dynamic constraints, 
dddd CzBuAxx ++=+1  

),( , dddd zuxfy =  

Note that while the state dynamics is linear, the output variables are a nonlinear function 
of the states. 

3.4 Properties of the Optimization Problem 
Based on the stochastic models described in the previous section, we can describe the 

properties of the model and the value function Vd. The model is Markov, meaning that all 
information of future outputs is contained in the current values of the state. As a result the 
value function Vd is also Markov. The changes in value of V over time is due to changes 



in the underlying state vector xd. Furthermore x changes as a function of the noise vector 
zd. Since zd is a stochastic process with independent increments, Vd will also be an 
independent increment process. We formally write this as: 

 0for  ),(V oft independen is )( 1d1 ≠+− ++++ τττ ddd VVV  
Furthermore Vd is a martingale process, 

 ddd VVE =+ )( τ . 
The proof for this is a simple application of iterated expectations. 
Using these characteristics of the value function, we can now rewrite the objective 
function of the hedging problem, 

  { } { }00 VVrVarVVEJ TT −−−= . 
First we write the total change in the value function over the hedging period as a sum of 
incremental changes, 
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Since Vd is an independent increment process, the variance becomes a linear function of 
the increments, and we can write the objective function as, 
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Furthermore, since Vd is martingale, the increments are zero mean, and we can write, 
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Next we join the summation and arrive at the new objective function, 
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Which can be written as: 

 ( ) ( )2
11),,( −− −−−= dddddddd VVrVVuwxg  

where gi is a function of the current state and the disturbance vector. The objective 
function now becomes, 
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This problem can be solved recursively by starting at the end of the hedging period, 

 { } ∑
−

=

+=
1

1

),,(),,(
N

i
ddddNNNN uwxguwxgEJ , 

which conforms to the standard dynamic programming formulation [5]. For this type of 
formulation there is a wide range of literature regarding efficient solution techniques. 

4 Conclusion and Future Work 
In this report we show how the unique properties of electricity production and 

consumption influence the dynamics between electricity spot and forward markets. 



Specifically, the price level on the spot market depends only on the current state of 
demand and supply, and is independent on forward market prices. We apply this 
understanding of market dynamics to the problem of dynamic hedging of the obligation 
to serve load under standard offer contracts. A price process is presented which mimics 
the behavior of load and supply bids into the spot market. It emphasizes the temporal 
relationship between load and supply states and spot prices. Applying this type of model 
we show how the dynamic hedging approach can transformed into a standard dynamic 
programming optimization problem. This result will allow us to apply efficient DP 
solution techniques to the hedging problem. Future work will focus on solving the 
dynamic programming problem as posed, and also extend it to the full blown bid based 
price model as described in [1]. We also want to extend the hedging approach to include 
risk management by power producers. Specifically, by applying principal component 
analysis, we can transform the cash flow from a generator with unit commitment 
constraints, into a Markov type process which lends itself to the techniques outlined in 
this report [2]. 
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