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Abstract

The deregulaion of the dectric utility indusry has brought with it a great ded of
financid uncertainty for market participants. In this report we address the question of
how paticipants can use avalable markets in order to mitigate this risk. In order to
develop effective drategies for trading, one must firs have a good understanding of the
dynamics of prices on dl avalable markets We therefore begin by addressng the
relaionship between financid and physicd, spot and forward markets. In doing so we
examine the arbitrage pricing theory approach to modding forward prices, and evauate
its rdevance for nonrstorable commodities. From the basc rdationships between the
markets, we arive a dochasic modds which quantify future uncertainty in the
marketplace.

Next we congder the case of a load serving entity serving load under a standard offer
contract. We show how the stochastic models for load and spot prices adlows us to
quantify the risk exposure of the LSE. Next we formulate the problem of how an LSE can
optimaly manage its risk usng a periodicaly rebdanced forward portfolio, based on a
mean variance objective function. We show that by using the proposed price models, we
can convert the problem into a dynamic programming formulation, which can be solved
with anumber of computationaly efficient tools.



1 Introduction

Competitive power markets exhibit a leve of price volatility unpardleed in traditiond
commodity markets. The reason for this behavior lies in the nature of how dectricity is
produced and consumed, including lack of dorage, indlastic load, and strong seasond
effects on multiple time scdes. These characterigtics of supply and demand are reflected
in the dynamics of market prices, and specificdly in the joint dynamics of spot and
forward prices. This interaction is of tremendous interest to market participants who wish
to use the forward markets to manage ther financid risk.

In this report we address the reationship between financid and physica, spot and
forward markets. In doing so we examine the arbitrage pricing theory agpproach to
modeling forward prices, and evauate its relevance for non-storable commodities. From
the basc rdationships between the markets, we arive a dochastic models which
quantify future uncertainty in the marketplace. These modes are then be gpplied to the
problem of dynamic hedging of physical and financid obligationsin eectricity markets.

2 Power Markets

There are three fundamenta markets available for trading eectricity. The Spot Market
(day ahead), the physicad forward or bilateral market, and the financid forward or futures
market. While there is no exact mapping between prices across these markets, there is a
srong interdependence. We here examine the interplay between the markets, and attempt
to define credible mode s for the joint evolution of prices.

21 The Spot Market

The spot market is conducted by ether a power exchange or an 1SO. Participants
submit bids, generdly on a day ahead bass, and the market maker clears the market and
announces and hourly locationd system price. Trade on this market is physicd, meaning
that physicd ddiver is dways expected. Paticipants who default on a physcad contract
will be charged a pendty which is normaly dependent on the price of red-time or
baancing power in that region.

2.2 ThePhysical Forward Market

Physcad forwards can be traded on an exchange or in a bilaterd manner through over
the counter (OTC) transactions. Exchange traded forwards use standardized contracts,
with power being traded in monthly on and off-peak blocks (see CBOT definition of
power contract). The contract specifies a single MW quantity () and a single ¥MWh
price (F). The short postion (sdler of the forward contract) is obligated to physcaly
deliver power a a constant rate q to a location specified in the contract (the HUB). The
contract does not specify the location a which the power is produced or consumed, but
dsates that the short party is responsble for delivering the power from the generator
location to the HUB, and the long podtion is responsble to ddiver the power from the
HUB to the load location. For both sdes this may involve purchasing additiond
tranamisson contracts, or purchasng/sdling power through the spot market. Such



provisons are not addressed in the contract, and the relative prices of the spot and
transmission market will not affect the price of the forward contract.

The price of exchange traded physica forwards is quoted daily by the exchange. The
information provided includes the high and low prices as well as the volume traded and
the volume of open interest. The exchange quotes prices for every ddivery month up to
15 months into the future. This vector of prices G(t), which congtantly evolves new trades
become public, make up the forward curve for ectricity.
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Physca forward contracts trede continuoudy while the exchange is open, until the
fourth business day prior to the firsd ddivery day of the contract. At this point trading
terminates, and any party left with a short position is required to deliver power according
to the provisons in the contract. A trader can avoid this by ‘booking out’ his postion,
purchasing a long postion which exactly offssts his short postion for the same ddivery
month.

2.3 TheFinancial Futures Market

Financia futures contracts for eectricity are traded on exchanges such as NYMEX
and CBOT. Financia contrects are smilar to exchange traded physica contract in
dructure. The main difference is tha the paties entering into the contract have no
intention of physicdly producing or consuming the power, but rather use it as a financid
hedge againg other podtions in the market. The financial futures contracts are therefore
settled trough the exchange of cash rather than power. In generd the payoff function for a
party holding the long position in aforward contract is given by:

payoff (long) =S; - F(t,T),

where Sy is the spot price a the matuity T, and F({,T) is the price of the futures
contract a the time t it was entered into. The problem which occurs with dectricity is that
the ddivery period for the futures contract is one month, while the underlying spot
process is updated on a day dead basis. As a result, when the futures contract matures
on the 4'th business day prior to the first day of the ddivery period, the sot prices for
hours in the ddivery month are not yet known. Hence the contract cannot be settled
finencdly a this time. To crcumvent this problem, exchanges have taken on two
different approaches, ex-post settling and ex-ante sttling.

Ex-post settling: In this gpproach, the futures contract is settled gradudly settled
during the deivery month. If two parties have ertered into a futures contract for g MWs
of onpeak power a a price F, then for every day for the duration of the delivery period,
the following process determines the cash flow:



1. The onpesk price of power for the day is caculated by averaging the hourly price
of the 16 on-peak hours from the day-ahead spot market. We denote this prices
Ppeak

2. The long position (buyer of contract) will pay the difference between the P** and
F times the quantity of the contract, times the number of on-peak hours (16). If
this quantity is negetive then the cash flow will be from the short postion to the
long position.

The totd cash flow for the long podtion over the duraion of the ddivery month is
given by:

& 16q(R™" - F)
i=1

where nisthe tota number of daysin the ddlivery period.

Ex-ante settling: In this case, the futures contract is settled financidly a its expiration
date, ie. on the 4'th day prior to the beginning of the ddivery period. Since the day-ahead
goot price is not yet known for the ddivery month, the price of a physical forward
contract for the same delivery period and location is used in place of the day-ahead
gpot. This effectivdy is a change in the underlying commodity from which the futures
contract is derived from a derivative the spot market to a derivative on the physicd
forward market. The payoff function for the long position & maturity T is given by:

a qcr.m-F)
where q is the quantity of the contract in MWs, G(T,T) is the price of a physca forward
on the last day of trading, and F is the price at which the futures contract was purchased.

Both the day-ahead spot and physical forward are based on the same commodity,
eectricity ddivered a a specific grid location. However there is no smple mapping
between the ex-post average spot price and the ex-ante physcad forward price. This is a
very crucid point to undersand in dectricity markets. While the settling procedure
differs form market to market, the dominant trend seems to be in the direction of ex-post
stling, as seen in Cdifornia and Nordpool. Unless otherwise specified we will from
here on assume that financia forwards settle ex-post.

2.3.1 ArbitragePricing and Price Convergence

Arbitrage pricing theory (APT) [6] is based on the bdief that pure arbitrage
opportunities cannot survive in competitive markets. This assumption imposes condraints
on the manner in which prices coevolve in the market. We consider this approach as it
relates to three types of assets: stocks, storable commodities, and dectricity. We adapt the
following definition of arbitrage.

Consider a market with n tradable assets, each with price %(t). A portfolio O is build
by purchasing and sdlling these contracts. The vaue of the portfolio is given by:



P(t) =8 wHx()

i=1
where w; represents the quantity of asset i in the portfolio. W’s can be negdtive if the
market dlows short-sdling. Since future asset vaues are uncertain, the vaue of the
portfolio at t>tp isarandom variable.
We define an arbitrage opportunity as follows. Arbitrage exigs if a time tp we can
congiruct a portfolio O with the following properties
P(t)=0
and for some t >t
Prob(P () <0)=0
Prob(P (t) >0)>0
This means that we can condruct a portfolio with zero cost, which has zero probability
of decreasing in vdue and a drictly postive probability of increasing in vaue. Since the
portfolio has zero initid codt, any maket participant can purchase an unlimited amount
of the portfolio, and enjoy a risk free guaranteed profit. The theory is that as arbiters start
to take advantage of this opportunity, they will create an upward price pressure on assets
with postive weights in the arbitrage portfolio, and downward price pressure on assets
with negative weights. Prices will then reach a new equilibrium where the abitrage
opportunity no longer exids.

2.3.2 Application of Arbitrage Pricing Theory (APT) in Electricity Forward and
FuturesMarkets

We now address the reative prices of physica forward and financid futures contracts
with ex-post stling, in the framework of arbitrage pricing as defined in the previous
section. We dlow for the contract to be traded on different exchanges, but assume that
there is reasonable price trangparency and liquidity in the market. The vdidity of these
addressed at the end of the section.

Recdl that the notation for the price of a physica forward contract sgned at time t for
ddivery a time T, is denoted by G(t,T). The equivdent notation for a financid futures
contract is F(t,T). We now consder possble rdative price levels of the physica and
financid markets, and test their congstency with the absence of arbitrage assumption.

Firg condder the event where a a time t, we observe a set of contracts for ddivery
month T satisfying the relationship,

F(t,T)>G(t,T)
A trader can then implement the following srategy.
Attimet:

1. Purchase g MW of physical forward contracts.

2. Sl gMW of financid futures contracts.
AttimeT:



1. For each hour in the ddivery period, submit a sdl bid of g MW of power into the
day ahead spot market at zero price. The power needed to ddiver from the spot
market is received from the physica forward contract.

The cash flow from this srategy in each time period is shown in the table. Note that
al cash flows from forward contracts are redlized at the end of the contract.

t T
buy physica 0 NgF(t,T)
o finandd 0 N
e NGF(t,T)- & oS

i=1

| 0 N

$ aas
i=1
Total 0 Ng(F(t,T)- G(t,T))>0

This drategy provides a guaranteed profit with zero investment, and therefore it is an
arbitrage opportunity which cannot be sustained.
Now consider the case,
F(t,T)<G(t,T)
The trader adopts the following strategy.
Attimet:
1. Purchase g MW of financia futures contracts.

2. Sdl g MW of physical forward contracts.

AttimeT:

1. For every hour in the deivery period, submit a buy bid for g MW to the day-
ahead spot market a the market maximum price (we later discuss what happens if
the spot market fails to clear). The dectricity purchased in the spot market is used
to deliver againg the obligation from the physical forward contract.

The cash flows in each time period is given by:

t T
sl physica 0 ~NoF(t.T)
P finenda ° & S - NoF(t,T)
i=1
| 0 5
o 805
i=1
Total 0 No(G(t,T)- F(t,T))>0

This drategy provides a guaranteed profit with zero invesment, and therefore it is an
arbitrage opportunity which cannot be sustained.




The drategies presented above show that in a market free of arbitrage opportunities,
the price of a financid forward cannot deviate from the price of a physcd forward, in
ether a pogtive or negative direction. This condition must hold true not just a maturity,
but during the entire lifetime of the contracts. We thus arive a the firs condraint for

electricity derivatives in an arbitrage free marketplace:
Gt,T)=Ft,T)" t,T

2.3.3 Limitsto Arbitrage Pricing Arguments

While APT provides a convincing argument why physical and financid forward prices
must be equad a dl times, actud observations in the market place show that the two
market can diverge a times. The reasons for this incondstency can be found in the
assumptions  underlying the arbitrage argument. The following points illusrates how
market redities deviate from the theory:

1. Moving Equilibrium:  Arbitrage pricing theory is based on an equilibrium
argument. It dates that in a market with active arbitruers, a set of prices which dlow for
risk-free profit with zero investment is not sustainable. As traders execute the arbitrage,
they gradudly dter the relative prices until the sysem sdttles into an arbitrage free date.
Markets in generd, and dectricity markets in paticular, are continuoudy evolving
dynamic sysems. The effect is amilar to that of a feedback control system driving the
daes of a system towards a continuoudy changing control input. Unless the input signd
evolves a a dgnificantly dower rate, the dates will never sdtle to ther equilibrium
vaue.

In the case of dectricity markets, the validity of the equilibrium argument will depend
on two factors:

1. The rate at which new information about the future expected vaue of the spot price
enters into the market. Changes in traders perception of the future is the driving input into
the futures market. Information which would cause traders to change their perception
would include updates on future weather/load conditions, or news of a generator or
trangmission line outage.

2. The volume and rate & which contracts are trading in the market. This represents
the magnitude and speed of the feedback response, or the rate a which the market can
react the new information. Thisis aso known as amarket’ s liquidity.

We address this issue in more detail as we introduce our dynamic modd for the
evolution of the spot price.

2. Uniqueness of Prices: Unlike the spot market, the forward markets do not have a
unique clearing price. The price quoted by the exchange is a weighted average of dl
trades in the last day. However there is no guarantee tha the trader can find a counter-
party willing to trade a exactly this average price a the time the arbitrage is executed.
There generdly is a gap between the highest price the market is willing to buy, and the



lowest price the market is willing to sdl a. This is known as the bid-ask spread. The
meagnitude of the bid-ask spread is dependant on the liquidity of the market.

3. Transaction Costs: Exchanges are generdly for profit enterprises. They make a
profit by charging a smdl fee for every contract which is executed on the exchange. The
loss incurred by the trader due to such fees is known as a transaction codt. In dectricity
markets, exchanges generdly charge a fixed fee per MWh of power covered in the
contract. In order to execute an arbitrage, the guaranteed profit must be greater tian the
totd transaction cost incurred. The magnitude of the transaction cogt is reaively minor.
Nordpool for example charges approximately one cent per MW traded in a futures
contract.

4. Market Failure: In designing the arbitrage drategies we assumed that a zero sl
bid and max buy bid into the spot market is dways accepted. There are Stuations where
the spot market would be unable to deliver additiona power a any price due to shortage
of generation assets or system security congdraints. In such a case the spot market would
fal to clear as the aggregate demand and supply curves do now intersect. Under such
circumstances there are default conditions specifying the charge/payment to be made to
each market participant. In the context of forward markets, the contracts often have a
clause for liquidated damages in the case of market falure. The party faling to ddiver
on a physca obligaion must pay whatever financid damage is incurred by the opposng
party to replace the power, or any penaty incurred by the opposing party for faling to
deliver on its subsequent obligations.

Smilar clauses for liquidated damages can be included in financid forwards, thus
effectively hedging the trader againgt market failure.

2.4 Relationship of Spot and Forward Markets

So far we have consdered the relationship between physicd and financid forward
contracts. Under the arbitrage free assumption it could be shown that prices in the two
markets have to be equd a dl times Now we consder the rdationship between the
forward price and the spot price. We apply arbitrage pricing theory to three markets,
equity, storable commodities and dectricity, to illustrate how the characterigics of the
underlying asset changes the pricing modd.

24.1 Thepriceof aforward contract on a stock

Assume the current price of the stock, which pays no dividends, is § and the risk free
interest rate is r, continuoudy compounded. The price of a forward contract on the stock
(F(tT)) with delivery date T must then be &7YS,. To see why this is true consider the
following cases
1. If F(t,T)> V5, the investor should sdll one forward contract, borrow S dollars at the

risk free rate (assuming this is possible), and buy one unit of stock. The net cash flow

a time t is zero. At time T, the investor ddivers the stock againg the forward



contract, receives F(t,T) dollars as payment for the forward, and &Y dollars to pay

off his debt. The net cash flow a time T is F(t,T)-€"YS>0. This is a pure arbitrage

opportunity, which cannot be sustained in an efficient market, and therefore sets the
upper limit to the forward price.

2. If F(t,T)< €TYs, the investor should buy on forward contract, short-sell one stock,
and lend S a the risk free rate. The net cash flow a time t is zero. At time T, the
investor pays F(t,T) and receives ddiver of the stock from the forward contract. He
uses this stock to repay his short-sdlling obligation. He aso recovers &TYS; from the
money lend. The net cash flow is €(TVS-F(t,T)>0 . This is again a pure abitrage
opportunity, setting the lower limit for the forward price.

In this case the upper and lower limits on the forward price are identicd, and
therefore, in an efficient market where participants can borrow and lend a the risk free
rate, the forward price must be given by: F(tT)=¢"VS;. This illustrates two important
points. First, under no-arbitrage conditions, the forward price of a stock is a deterministic
function of the spot price and the time to maturity (T-t). Second, there is a smooth
convergence of the spot and forward prices at maturity.

2.4.2 Thepriceof aforward contract on a storable commodity

Assume the current unit price of the commodity is S, the present value of the totd
cost of storage incurred during the length of the futures contract is U, and the risk free
interest rate is r. The lower bound on the futures price for deivery a time T is
FET)>(S+U)eT Y. If this does not hold, an investor can receive a risk-free profit by
borrowing S+U a the risk free rate, purchase the commodity and pay off the storage
codt, and short a forward contract in the commodity. The cashtflow a time t is zero, and
the cash-flow a time T is FtT)-(S+U)€"Y>0. This is known as cash and carry
arbitrage.

Payoff a each time step from cash and carry arbitrage:

t T
Buy commodity to be ddivered -S 0
againg forward contract.
S| forward contract 0 F(t,T)
Pay storage cost -U 0
Borrow now, repay at maturity S+U -(S+U)e™
Total Cash Flow 0 F(t,T) -(S+U)e' >0

Cash and cary abitrage establishes an upper lower on the forward price of the
commodity. The bound converges to the spot price as we reach maturity (T=t), and hence
if the forward price is consgtently lower than the spot price then the two prices must
converge.




The effects of cash and cary abitrage can adso be interpreted as a dynamic
relationship between spot and forward prices. Assume that at time t we observe a forward
price F(t,T), which violates the upper bound imposed by APT. We would expect the
following behavior in the market.

1. In the spot market, demand will increase, as arbitreurs rush to buy the commodity
in order to goreit. This put upward pressure on the spot market price.

2. On the forward market, the same arbitreurs sdll forward contracts in order to
execute the arbitrage, creating downward pressure on the forward price.

Now consder the reverse condition, when forward prices drop below spot market
levels. In this case, no pure arbitrage Strategy is present, since it may not be possble to
short sdll a physica commodity on the spot market. However, consder the podtion of a
market participant who is currently holding an inventory of the commodity. For this
person, the optima draegy will be to sdl the inventory today, and purchase chegp
forward contracts which can be used to restore the inventory at a later date. If there is
ggnificant inventory in the market, this will put downward pressure on the spot price, and
upward pressure on the forward price.

One can question wegather the bounds set by APT under redistic market conditions.
This is epecidly true for commodities with thin forward markets and high transaction
cost. However, weether or not the bounds are quantitatively accurate, the quditative
interaction between spot and forward prices can certainly be observed.

1. An increase/decrease in the forward price will put upward/downward
pressure on the spot price.

2. A spike/drop in the spot price will put upward/downward pressure on the
forward price.

Consder the following scenario. Tomorrow OPEC announces that it will reduce its
annua production of oil by 50%. Base on these news, the forward price of oil increases
sharply. Next, arbitreurs recognize the disparity between spot and forward prices, igniting
a buying spree on the spot market. This causes an immediate spike in the oot price of ail.
The dbove scenario illudrates an interesting characterigic of <orable commodities
markets. The relationship between the state of physical production and consumption
on one hand, and the spot market price on the other, is non-causal. In other words, a
future drop in production leads to a spike in today’s spot price. Note however that the
relationship between the spot price and the information flow is Hill causd. That is, the
gpot market will only react when the drop in future production becomes known to market
participants.

The need to modd the dynamic reationship between the spot and forward prices in
storable commodities has led to the notion of convenience yidd (y) which is defined as.
F(LT) =(§ +U)el 1



The convenience yields represents the premium the market is willing to pay in order to
physicdly hold the commodity today, rather than a promise for ddivery a time T. We
can modd y as a determinigtic parameter, or a sochagtic state of the system depending on
the market.

2.4.3 Thepriceof aforward contract for dectricity

It is easy to see that cash and carry arbitrage is not possible for dectricity. To execute
the arbitrage one would need to purchase eectricity a time t, store it somewhere, and
ddiver it againgt a forward contract at time T. Since dectricity is not storable one cannot
execute this type of arbitrage. As a result, the dynamic relaionship between the spot and
forward price described above does not hold for eectricity. A good example is the case of
schedule unit outages. If it were announced today that a mgor nuclear plant in New
England would be out of commisson for the month of July, this would cause an
immediate increase in today’'s price of a forward contract with ddivery in July. However
it would have no effect on the current spot price. We can therefore state that electricity
spot prices are causal in the state of production and consumption of eectricity. This
will have a tremendous impact on how we modd dectricity spot and forward prices.

Without the ability to execute an arbitrage between the spot and forward markets, APT
is usdess in predicting the reationship between the two markets. Insgead we have to
address the forces underlying the demand and supply in forward markets. One approach
is to assume that the market as a whole is liquid enough that every paticipant holds a
amdl fraction of the totd risk. As a result the market effectively behaves in a risk neutra
manner, even if the individud participants are risk averse, dlowing us to pose the
relationship,

Ft,T)=E{s]}.

Therisk neutrd formulation is the basis for most risk management and option pricing
theories in commodities markets. The problem with this assumption is that eectricity
markets are rdatively illiquid, with a smal number of participants. In light of thiswe
here propose amore generd modd dlowing for the existence of arisk premium in the
market. We model the forward price as a function of the spot price, the variance of the
spot price, and arandom disturbance (),

F(LT) =F (E(S;).var (S;).27)
The exact dtructure of the forward risk premium islikely to vary from market to market.

3 Dynamic Hedging

3.1 Moaotivation

We condgder the Stuation where a load sarving entity (LSE) has obligated itsdf to
serve a group of customers a a fixed rate. The contract is set up in such a manner that the
cusomers may consume may consume as much or as little power as they want & any
time without additiona pendties. This setup is Smilar to the current ‘standard offer’



contracts being offered to retal dectricity customers. Furthermore we impose the
condraint that the LSE owns no generating assets but purchases al power from the spot
market. This exposure to the spot market leaves the LSE with dgnificant financid risk.
To mitigate this risk it can purchase financid futures contracts on dectricity through the
commodities exchange. We will here address the problem of how to generate an optima
trading strategy for the LSE in the futures market.

3.2 Problem Formulation

We will now generate mathematicd models for the financid risk faced by the load
serving entity. This will include modeding the stochestic behavior of loads, spot prices,
and futures prices. The notation used is summarized in the table below.

R Fixed rate for customer (standard offer) (¥MW)

S Spot pricein day d.

I Tota amount consumed in day d (MW)

Fir Price of a forward contract for deivery in month darting a T, as
seen at the time of purchaset; (¥MWh)

O T Totd quantity of forward contracts purchased for deivery month
datinga T (MW/h) at time of purchaset;.

M tota number of daysin amonth

N number of months in the hedging period

T Starting day of hedging Period

We begin by modeing the cash flow br the LSE before any purchases in the forward
market. Thisis the unhedged cash flow (CF).

N M(m+l)
[o) o]

CF’=a al(R-§g)
m=1k=Mm+1
For amplicity we will here consder the case where the hedging period is a sngle

month. The cash flow function then becomes:

T+M

CF’ =3 lu(R- &)
d=T

Next we congder the cash flow incurred from a portfolio of forward contracts g m.
Thisis the cash flow of the hedge CF.

T+MAH

H_ & €3 u
CF" = a éa qtj,T(Si - Fi,T)g
u

d=T €j=0
The index t; represents points in time when we dlow the LSE to purchase forward
contracts. Since a forward contract k1 cannot be purchased after the starting date of the
deivery month (T), we include the congraint tET. The timdine of the hedging process is
shown infigure 1.
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Figure 1

The hedging period [tp,T] is divided into H hedging intervds of equd length. The
number of hedging intervas used will generdly depend on the transaction cost and
liquidity in the forward market.

Findly we consder the totd cash flow for the hedged LSE (CF)

T+M

CF = aéld(R Sd)aQT(Sd tj,T)g
d=T @ u

Not that the forward contracts have no cash flow prior to the delivery period, therefore
CF isequd to the tota profit received by the LSE.

As seen from the gtart of the hedging period, b, &, and F; 7, are al random varigbles.
We therefore define a vadue function Vi denoting the expected profit seen by the hedger
at each step t; in the hedging period.

v, =E {CF}
or in expanded form,

FT+MA

o € o1 DP
A de(R-S)+a (& - Ft],T)l;lg
e u

=T j=0

\/t:Et

—)'"—w—l-

Q

Vio represents the initid expected return of the unhedged portfolio. The objective of the
hedging drategy is to maximize the expected vdue of the portfolio while minimizing the
risk (or variance) of the return. We define a mean variance objective function [8]as,

max, J=E\, -V, f- rvardy -V, |

3.3 Underlying Stochastic M odels

To solve the stochadtic optimization problem formulated above, we require specific
information about the joint probability distributions of load, spot prices, and forward
prices. To arive a these didributions we podulate stochastic models for the time
evolutions of the random variables. The modds described below are smplified versons
of the full blown bid based price mode described in [1], and generates daily spot prices.
The model mimics the supply and demand bids into the spot market. Demand bids are
assumed to be indagtic, while the aggregate supply bid curve is modded as a time
vaying exponential function. The stochadtic processes describing the time evolution of
the load and supply dates are dl Markov, reflecting the tempord reationship between



oot market price and supply/demand dates discussed in earlier sections. Another key
aspect of the modd is the link between load and price dynamics. This accounts for the
correlation between load and price uncertainty when formulating the hedging strategy.

Spot price Modd:

Sd - eald +hy

Load Modd:

i - 1 =@’ (P - 1) +s 'z,

Supply Modd!:

by~ by =a°(nT - by) +s "z

Forward Price Modd!:

For = Ed{§}+ pvad{§}+5 Fz

where,
_ T+N

S=as:

d=T
Note that vari(Sr) is a determinigtic function of (T-t), and can therefore be thought of
as a parameter of the modd. Specificaly we write;

h =[var (.., va (S.2)- Var (S.n)]
We can express this function in terms of the state vector Xg,
Xy :[Id bd]’
the output vector vy,
yg :[ld S Fr Vd]’
the control variable corresponding to forward market purchases,
Uy =0yt
and stochagtic inputs,
7=z % Z|.
We aso define avector of parameters g,
qT :[n,i,bal,b,’s LbF p,h]
We can now write the dynamic congraints,
Xguq = A%y +BUy +CZ
Yo = F(X4,U424)
Note that while the state dynamics is linear, the output variables are a nonlinear function
of the states.
34 Properties of the Optimization Problem

Basaed on the stochastic models described in the previous section, we can describe the
properties of the modd and the value function V4. The modd is Markov, meaning that al
information of future outputs is contained in the current values of the state. As a result the
vaue function Vg is dso Markov. The changes in vaue of V over time is due to changes



in the underlying date vector ». Furthermore x changes as a function of the noise vector
Zs. Since zy is a dochagtic process with independent increments, Vg4 will dso be an
independent increment process. We formdly write this as.

(Va1 - Vy) isindependent of (Vy,, ., +Vy,, ). fort 1 0
Furthermore Vy is amartingale process,

Ea Vo) =Vy _

The proof for thisis a smple gpplication of iterated expectations.
Using these characterigtics of the vaue function, we can now rewrite the objective
function of the hedging problem,
J=E{V, -V} - rvar{V; - v}
First we write the total change in the vaue function over the hedging period as a sum of
incremental changes,
N
Vr-Vo=a Via- V
i=1 )
Since Vy is an independent increment process, the variance becomes alinear function of
the increments, and we can write the objective function as,
N N
3=4 EV,- vi}- rd var{vi, - v}
i=1 i=1 )
Furthermore snce Vyis marti ngale, the increments are zero mean, and we can write,

J a E{V \/| 1}‘ ra E{( |+1 \/I)z}
Next we jom the summatlon and arrive & the new objective function,
N
J :é E{V. - Vi-l}' rE{(Vi B Vll)z}

i=1

Which can be written as.

g (X, Wy, Ug) = (Vd d- 1) r(\/d-vd-l)z
where g isafunction of the current state and the disturbance vector. The objective
function now becomes,

J= E| a 9 (X4 Wd’ud)%

||1

This problem can be solved recursively by sarting at the end of the hedging period,
J= E{gN(XN WN!UN)}+ a Qo (X Wdrud)

i=1
which conforms to the sandard dynamic programming formulation [5]. For thistype of
formulation there is awide range of literature regarding efficient solution techniques.

4 Conclusion and FutureWork
In this report we show how the unique properties of dectricity production and
consumption influence the dynamics between dectricity spot and forward markets



Specificdly, the price levd on the spot market depends only on the current State of
demand and supply, and is independent on forward market prices. We apply this
undersanding of market dynamics to the problem of dynamic hedging of the obligation
to serve load under standard offer contracts. A price process is presented which mimics
the behavior of load and supply bids into the spot market. It emphasizes the tempora
relaionship between load and supply states and spot prices. Applying this type of mode
we show how the dynamic hedging approach can transformed into a standard dynamic
programming optimization problem. This result will dlow us to goply efficent DP
solution techniques to the hedging problem. Future work will focus on solving the
dynamic programming problem as posed, and aso extend it to the full blown bid based
price model as described in [1]. We dso want to extend the hedging approach to include
rsk management by power producers. Specificaly, by applying principa component
andyss, we can trandorm the cash flow from a generstor with unit commitment
congraints, into a Markov type process which lends itsdf to the techniques outlined in
thisreport [2].
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