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Abstract

The bid based modd developed in this report is intended as a fundamentad modd  for
electricity price dynamics, to be used in a wide range of agpplications. The emphasis was placed
on incorporating the unique characteristics of dectricity prices, including sessondity on multiple
time scdes lack of load dadiicity, stochastic supply outages, strong mean reverson, and
sochadtic growth of load and supply. Principd component andyss is goplied in the modd in
order to capture intra-day dynamics, while a the same time grestly reducing the computationa
complexity.

The mode is cdibrated on actud load and price data form the New England 1SO. We dso
propose extensons of the modd to ded with ingances of multiple spot markets connected by
transmisson lines. Through smulations we illusrate how the modd can be used to edimate the
vaue of trangmisson rights in a two-market environment. It is dso shown how the model can be
used by a for-profit trangmisson provider in order to make optima investment decisons in new
transmisson cgpacity. Findly, an extenson of the modd is proposed to smulae the interaction
between technicd innovation and long-term price dynamicsin eectricity markets.
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1 Problem of Interest

The redtructuring of the dectric utilities industry has forced industry participants to rethink
their gpproach to a number of decison processes, including investment, speculation and risk
management decisons in eectricity markets. These problems dl require knowledge of the future
behavior of prices in the market. This has led to a push in the industry as well as in academia to
develop viable models describing the stochadtic behavior of dectricity prices. Since the modds
are being applied to a wide variety of questions, there is no ‘perfect’ mode. The modd has to be
evduated in context of its gpplication. Since a company may be required to coordinate its
decison process in asset investments, risk management and Speculation, there is however a
diginct advantage to ensuring that the modes that are used in each case are a least not
conflicting in their estimates, but represent their users best understanding of the marketplace.

Spot ot Optimal
_ price L Strat
Drivers__,| Model | — [Obligation Function
Forward
Drice

Fig. 1: Dependence of optima decisions on the dectricity price models

We begin by formulaing the problem in terms of a generic st of future cash flows. The cash
flows can be a reault of an invesment into physicd assets, a contractua obligation, or an
exchange-traded derivative. Future cash flows are a function of future market prices. Usng the
results of the price modd in the cash flow function dlows us to edimate the joint probability
digtribution of future cash flows, Fig. 1. This didribution, in turn, is fed into the users objective
function, which becomes the criteriafor optima decision-making.

Depending on the objective of the user, a number of approaches for modeling price dynamics
ae avalable. In this section we separate these approaches into dx broad categories. The
gpproaches differ in complexity, detail and objective of the models.

1.1 Quantitative Modeling of Electricity Prices- [8],[21],[23],[24]

Objectives: To characterize the dtochadtic properties of commodity prices over time,
specificdly, to atempt to derive the variance and covariance of commodities prices. With this
information the user is then able to price a broad category d financid derivatives, as well as to
perform basic risk management functions.

Characteristics: The modds used in quantitative modding are usudly generic in nature. The
user attempts to find the lowest order model possble to accurately describe the stochastic
properties of the commodity.

Advantages. Since the modd is generic, the user does not require an in depth understanding
of the economic or physca rdaionships involving the production and trading of the



commodity. Cdibration schemes are dso dandardized and can be duplicated across multiple
commodities.

Disadvantages. This category of modes is cdibrated usng historicad spot and forward
market data, and when avalable, usng implied voldilities from historicd models. It requires the
avalablity of a ggnificant amount of price history data. In case of dectricity, changes in the
regulatory environment have made higtoric prices invdid for cdibration purposes, leaving the
user with an inadequate set of training data for the models.

1.2 Production (Cost) Based Modeling of Electricity Prices

Objectives: To mode future dectricity prices based on detailed modds of the cost structure
of individud products. This information is used to create a cost-based supply curve. Combined
with estimates of future demand, this can be used to generate price etimates.

Advantages. Margind cogt information is generdly avalable for dl producers in a region.
The creation of a supply function is therefore a rdatively Sraightforward exercise. Furthermore,
the cost can be linked to underlying fud prices by usng heat rate esimates on the unit. This
alows the user to model the interaction of fuel and dectricity prices.

Disadvantages. Cost based modeing ignores the drategic bidding practices of market
participants. The effect of market power is likely to raise prices above cost-based levels The
cost-based models can therefore rardly be calibrated to correspond to actua observed prices in
the market.

1.3 Economic Equilibrium Models of Electricity Prices [26],[27],[28],[29]

Characteristics: As means of incorporating strategic bidding into cost-based models, theories
such as Cournot pricing are applied to the generation stack. At a given load level one can then
solve for an equilibrium markup of bids above cost based levels. This markup will generdly
increase as afunction of market concentration.

Advantages. By applying game theory type modes it is possble to explan why prices rise
above cost-based levels. This gpproach is useful in predicting expected price levels in markets
with no price history, but known supply costs and market concentration.

Disadvantages. These modds produce equilibrium price levels. However, dectricity markets
are congantly evolving, driven by sochastic demand and supply, and therefore never settle to
equilibrium leves. In applications such as risk management, underganding the dynamic
behavior of pricesis crucid. In this case economic equilibrium modds offer little ingght.

14 Agent-based Modeling of Electricity Prices[15],[16]

Characteristics: Agent-based models attempt to capture the drategic behavior of investors
(agents) on the marketplace. To approximate the dynamics of the market, participants are
separated into groups, each with their own objective function. Based on the objective function



and observation of current price levels, a decison rule is defined for each group. These rules can
be highly nonlinear in nature. Findly the sysem is Smulated under various inputs.

Advantages. In contrast to cost-based and equilibrium models, agent-based models address
the effect of market power both on the overdl price markup, and the inter-tempora dynamics of
price. The variety of dynamic behavior, which can be captured with a reatively smal number of
drategies, is impressve. The gpproach, for example, dlows the user to study the impact of
factors, such as collusion, on the overdl system price.

Disadvantages. While agent based modding is useful for sudying the quditative behavior of
markets, it is much more chdlenging to get rdevant quantitetive results. To do so, one would
need a consstent method of calibrating the parameters of the decison processes based on
historica data. This seems like an overwhelmingly difficult task.

15 Experimental Modeling of Electricity Prices [25]

Characterigtics. In the experimental modeling approach, a group of people are gathered and
assigned assats and obligations in the market place. They then smulate the behavior of the
market by submitting bids, which are used to clear the market.

Advantages. The organizer of the experiment has full control over the parameters and can
change factors such as market concentration or number of participants in order to observe the
effects on the spot price.

Disadvantages. Experimenta modding is extremdy difficult to map into a red marketplace.
To get rdiable results, one would need to convince actud marketers to participate in the process,
and even then it is questionable if they would betray their actud trading strategies.

1.6 Fundamental Modeling of Electricity Prices[17]

Objectives: Determining the sochastic properties of commodities prices.

Characterigtics: In the fundamenta modding approach, price dynamics are described by
modding the impact of important physca and economic factors on the commodity price. The
model seeks to capture basic physcd and economic relationships present in the production and
trading of the commodity. By explicitly adding these condraints, one can incresse the
complexity of the modd while decreasing the requirements on the available training data.

Advantages. By rdaying the dynamics of the commodity price to the fundamenta drivers,
we gan a new set of training data If the fundamenta inputs are directly observable, we can use
historica inputs in order to cdibrate the modd parameters. In the case of dectricity this can be a
crucid difference. Currently there is only 1-2 years of relevant eectricity price higtory available
(depending on location). However, if we choose temperature (a mgor determinant of dectricity
demand) as afundamentd driver, we have decades worth of historical measurements available.

Disadvantages. In creating the fundamentd mode we make gpecific assumptions about
economic relaionships in the marketplace. The price projections generated by the modes are
therefore very sendtive to violations of these assumptions Thus there exists a dgnificant
modeling risk in the gpplication of the fundamenta gpproach.



2 Bid-based Stochastic Model for Electricity Prices

In this section we develop a Bid-based Stochastic Model (BSM) of the evolution of prices on
electricity spot markets. We assume that the spot market operates as a double auction, smilar to
the rules of the Cdifornia Power Exchange. The modd can be modified to account for variations
in the auction procedure.

We desgn the modd to be gpplicable to hedging, speculation or investment decisons in
eectricity markets. As such, it focuses on quantifying the uncertainty of future price movements.
We have used fundamentd modeling approach, where the fundamentd drivers are load and
supply shifts. The modd captures the most critica characterigtics of demand (load) and supply as
outlined below in eectricity market.
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1.

2.2

L oad Characteristics

Load Elasticity: We assume dectricity demand to be completdy indadtic (i.e.
independent of market clearing price). This may appear to be a strong assumption, but in
the current date of deregulation, few end users actudly observe red time price
movements.

Seasonality: Seasondity is a mgor driver for dectricity demand. We observe seasondity
over the daly, weekly, and yearly cycles.

Mean reversion: One can observe temporary spikes in dectricity demand, often induced
by extreme weather conditions. However, these spikes are not sustainable and demand
reverts back to norma levelswithin afew days.

Stochastic growth: Growth in dectricity demand is driven in part by trends in the overdl
economy. The growth is therefore hard to predict over longer time horizons, and must be
considered stochadtic.

Supply Characteristics

Supply Eladticity: In contrast to load, electricity producers are price responsve. The
supply characterigtic is mainly a function of generation technology, as operating cost can
vay dgnificatly with the type of generator used. Market power and drategic bidding
aso have an impact on the shape of the supply bid function.

Stochastic Availability of Generation: Due to unexpected equipment failure or because
of planned mantenance, generators are taken offline from time to time The effect of
such sudden jumps in the avalability of supply on the market-clearing price can be
Sgnificant.

Uncertain fuel cost: Changes in the price of fuds such as oil and gas will affect the way
generaors bid into the market.

Unit Commitment: Nonlinear characteristics in the generator cost functions, such as
dartup cogs and minimum run times, result in intra-day supply bid curve shifts.

Import/Export: Producers and consumers bidding into the market from outsde its
geographic limits can cause sgnificant price shifts.



6. Inter-Market: Prices on related markets such as markets for capacity and ancillary
services, represent opportunity costs for power suppliers. Hence there is a strong
interaction between prices on these markets and price in the energy market.

2.3 Priceasafunction of Load and Supply

In our model we characterize spot price as a function of two variables, L representing load
shifts, and b representing supply shifts. These variables can be interpreted as follows.

Load: We assume load bids are indagtic. Therefore Ly is selected to represent the market
clearing volume of the exchange for hour k.

Supply: In contrast to load, supply bids have sgnificant price dadticity. The dadticity (or the
inverse of the dope of the supply curve) varies dgnificantly with the dearing quantity. In
generd, supply will be highly dadic a low demand levels, and gradudly become more indadtic
as demand increases.
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Fg. 2: Ascending-ordered margina costs of generators for Cdifornia

We can explain this characterigtic of dectricity supply in two ways. Fird we examine the cost
dructure of the underlying generators. Fig. 2 shows the ‘stack’ for Cdlifornia, created by
ordering the generators from lowest to highet margind cos. As seen in the figure the cost
function is rdaivey flat for low demand levels, when the load is served mainly by hydro and
nuclear plants. In the medium range we see a dight cost increase as efficient fossl plants are
utilized. In the high demand range, inefficient peeking plants are digpatched, and the operating
cost escaates sgnificantly.

Another gpproach is to view the supply bids from a game-theoretic perspective. At low
demand levels there is a high ratio of avalable generation cgpacity to dectricity demand. Hence
the market will be competitive and highly price responsive. As load gpproaches the tota ingtdled



capacity of the market, the few non-committed generators have a high degree of market power,
and can withhold their capacity to push prices upward. In-depth andysis of market power and
Srategic bidding in power markets can be found in [15] and [16].

Fig. 3 shows a plot of the supply curves submitted to the California Power Exchange during a
24-hour period.

100

| N
| iy

¢
) a‘ 4,
J' f
40 =

20 =

Bid Price ($/MW)

T N T T T T T 1
14¢00 16000 18000 20000 22000 24000 26000 28000 30000

-20

Supply (MW)

Fig. 3: Daily development of the supply curves and MCP

When comparing the cumulative bid curves submitted at different hours we find that the basic
shagpe of the bid curve is preserved over time. This dlows us to reduce the complexity of the
supply modd. We fix the shape of the bid curve and modd its tempord shifts as a stochagtic
process. Specificaly we chose an exponentid function to approximate the shape. Price in hour k
can then be written as,

Pk = @k+bx

where a is a fixed parameter characterizing the dope of the bid curve, g« is the market
clearing quantity in hour k, and lx denotes the podtion (r shift) of the curve. Next we add the
condraint that demand bids are indadtic. The market clearing quantity gx must then aways be
equa to the sysem load Lx. We can now write market clearing price in terms of our two
fundamentd drivers, load and supply:

Pk - eaLk+bk

This gpproach reduces the complexity of the problem by condraining the number of free
varidbles on the supply sde. The downsde of this assumption is that we risk misrepresenting the
shape of the supply curve in certain regions. There are three mgor parts of the supply curve,
lower, middle, and upper. The result of fitting each of them with an exponentid is shown in Fig.
4. Since we are concerned with the price range, corresponding to the actual (market clearing)
load at that hour, we have sdected the second exponentid (denoted as exp2), which best
gpproximates the middle part of the bid curve.

10



300

® December 28, 98, 14.00
expl
——exp2
exp3

250

200

MCP : $ 28,01
Load : 22915 MW

150

N e SO DA

100

canm lwe son®

PPIELdtesey

15000 17000 19000 21000 23000

25000 27000 29000 31000

Fig. 4: Exponentid fitting of the aggregate hourly supply curve
The next gep is to podulate stochagtic modds for the evolution of the fundamenta drivers.
In order to keep track of the varigbles and parameters evolving at different time scaes we use the
fallowing notation:

Subscript | Meaning Superscript | Meaning
d evolves a dally rate L Belongs to load process
m evolves a monthly rate b Beongs to supply shift process
none constants dL Appliesto load mean processd-
db Applies to supply mean process d”

The following section will outline the models used and the reason for choosing that specific
form. In later sections we present step-by-step descriptions on how mode parameters were

cdibrated based on historica market data.

24 Stochastic Load M odéel

We liged the four characterigtics of dectricity demand which we wanted to capture in our
mode; lack of price eadicity, seasondity, mean reverson, and stochastic growth. The dadticity
assumption is dready implicit in our formula for market dearing price Px. The chdlenge is to
incorporate the remaining criteria without making the modd too complex for cdibration and

smulation purposes.
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24.1 Modeding Demand Seasonality

The three types of seasondity in eectricity demand are daily, weekly and yearly patterns. Fig.
5 shows demand in New England for a sample week in May, starting with Monday.
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Fig. 5: Load diagram for aweek in May, New England

We see that there is a regularly recurring pattern within the weekdays (daly seasondity) and
that the weekend consumption pattern is sgnificantly different (weekly seasondity). From here
on we will amplify our task by diminating the weekends and modding only the weekday loads.
This dlows us to ignore the weekly sessondity. This smplification is taken directly from the
forward markets, which trade weekdays and weekends as separate contracts.

Addressng the daly seasondity is more chalenging. We have chosen to denote the daily
load as a [24" 1] vector Ly, where each component represents an hourly load. This vector is
defined as the sum of a deterministic and a stochastic component.

Ly =Hntry

The deterministic component my" is a [24" 12] vector that represents the typica or average
monthly load pattern for the day. This component evolves on a monthly time scde, snce the
typicd load pattern for January is sgnificantly different form the typicd pattern for Augus. Fg.
6 shows a plot of average 24-hour load patterns for each month in New England.
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Fig. 6: Average monthly patterns of daily load, my"-, New England

2.4.2 Modeling Load Uncertainty

The gstochagtic component r of the daly load pattern is needed to explan any deviaion in
actua observed load from the pattern given by my,. In order to achieve this, the vector r would
have to contain 24 random variables. However in observing actud load patterns, one finds that
there is a strong correlation between deviations in consecutive hours.

Intuitively, one could argue that if unusudly hot weether causes demand to increase in hour
14, it is vey likdy to dso cause higher demand in hours 15 and 16. To capture this
mathematically, we applied principa component anadysis (PCA) to the data, [10], [11] and [12].

Principd  Component Anadyss (PCA) is a method that enables us to describe a st of
obsarvations of n variables, which would normdly require n dimensona representation, with a
reduced set of j variables, j £ n. In other words, PCA addresses the issue of how to characterize a
probabilistic space of n dimensions using areduced set of j basis functions.

Although some information will be logt in this process, PCA endbles us to minimize this
information loss by choosng the new bass as the best goproximation by minimizing the
vaiance of the eror. In the origind data set, groups of vaiables often move in the same
direction, indicating that more than one variable is describing the same driver. Therefore, a group
of variables can be replaced with a dngle new vaiable. At the same time, we retan the
maximum informetion (variance) of origina observations.

PCA generates a st of new vaiables, cdled Principd Components (PC). Each principa
component is a linear combination of the origind vaiables (the old bass). All PCs ae

13



orthogond to each other, forming a new orthogond bass, o there is no redundant information.
A rough explanation of the theory supporting principd components and their derivation is
provided in Appendix A.

The output of the PCA agorithm is a set of principa components v'' and associated weights
W o that the best approximation of the load vector L 4 in the new basisis given by:

Lo=p+8 wiv .
i=1

In this report we will use a single principd component, a monthly [24" 1] vector v.™ to
describe load behavior, reducing the load equation to:

Ly =My +WgVy,

where my, and v, are deterministic parameters and wy is a daily stochagtic process.

The choice of the number of principa components used is a tradeoff between accuracy and
complexity. For short-term decison, making such as day-ahead bidding, a sngle PC may not
provide a rich enough sample space. However, when gpplying the price process to hedging and
vaudion decisons over months or years, a smal bass prevents the problem from blowing up in
computationd complexity.

Next we need to address how the stochastic component v evolves over time. The mode we
propose is a two factor mean reverting mode!:

€ € =-a'e s 7
ddL+1' ddL =k +gd Z(Ij_d ’

where,

2.4.3 Mean Reversion

We can interpret the states e and d4- in terms of the tempora characteristics of load. The
state @ models short term deviations in load, such as those caused by sudden hest waves. These
events are generdly temporary, and load gradualy reverts back to norma levels. The process for
ed is therefore chosen to be mean reverting. The parameter a determines the speed of reversion.
Fig. 7 illugrates how the short-term spikes in load quickly revert to the long-term mean. For
clarity, here the mean is being modeled as a monthly rather than a daily process. This time scae
separation between the dates is a method, which further smplifies the gpplication of the modd,
and its advantages and disadvantages are described in the calibration section.

2.4.4 Stochastic Growth

As & reverts to zero, the weight W reverts to d“, or the “normd” load level. However since
the power sysem is never a equilibrium, the normd load leve is in itsdf a stochastic process.
The d- process characterizes the stochastic growth of load over time. This growth could be
postive or negetive for any given period of time, and there can be dgnificant uncertainty to the
rate of growth, captured in the long-term volatility parameter s'9. The long-term growth of load
in New England isillustrated in Fig. 8.

The effects of the structure of the stochastic process on the mean and variance of future load
isexplored in detall in the section on Smulation.

14
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Fig. 8: Load weightswg-, and long-term mean di,-, New England
2.5 Stochastic Supply Process

Recdl our underlying price mode as afunction of load and supply states Ly and by,
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This implies that the aggregate supply bid curve is an exponentid function of fixed shepe
(given by &), which shifts over time.

Let us congder the input drivers, which could cause the supply curve to shift:

1. Fud price: An increase in fud prices would force suppliers to incresse thar bids into the
soot market in order to reman profitable. An increese in the fud price would therefore be
accompanied by a positive shift in by.

2. Unit Outages and Scheduled Maintenance: The withdrawa of a generation unit from the
market, whether through an unexpected falure or a scheduled maintenance, causes a dgnificant
shifts in the supply bid function. The sze and duraion of these dhfts as wdl as the frequency of
their occurrence, istechnology dependent.

3. Gaming and Strategic Bidding: It has been shown that generators with significant market
share may increase their profits by unexpectedly removing part of their generation assets from
the market, forcing up price and increasing the payoff for the remaining units [20]. Such an event
can be characterized by a pogitive shift in by.

4. Unit Commitment Decisions: While generators are often modeled as having well behaved
quadratic cost functions, in redity there are dgnificant non-standard costs and constraints
asociated with garting up and shutting down a generator. Trandating such condraints into bids
will cause generators, even though they may have no market power, to deviate from a margina
cost-bidding scheme.

We now atempt to trandate the impact of these drivers into a stochastic process for the
supply process. As with the load we characterize supply by a [24° 1] daily vector by containing
hourly supply levels. This daly vector is then decomposed into its determinigtic and random
components.

by =Wy +rg

25.1 Seasonality of Supply

Although less pronounced than the load, the supply process does exhibit seasondity over
multiple time scaes. The most pronounced are monthly and intra- day seasondity.

1. On a monthly time scale, we see the scheduling of maintenance. In a practice that has carried
over from the regulated indudtry, units are regularly scheduled for maintenance during the
off-peak seasons (mainly fdl and spring), when demand spikes are unlikdy. From the
modeling perspective this creates a repeeting twelve-month pattern of supply bid shifts.

The fud makets feeding the generators dso experience seasondity on this time scae,
manly due to seasona demand on oil and gas. Seasond fuel prices therefore create a second
pattern of supply shifts. The aggregate effect of these repedting yearly patterns is captured by
the determinigtic shifts in the monthly parameter m,.

2. The second type of seasondity experienced in the supply process is intra-day, where we
observe repesting 24-hour patterns of supply curve shifts. This type of seasondity is manly
contributed to unit commitment decisons done by the suppliers. The operator of the unit wl
edimate a day ahead of time the hours during which it will be profitable to run the unit,
based on the startup/shutdown condraint of the generator. Once this decision is made he may
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choose not to submit bids into the remaining hours, so as to not risk being scheduled and
incurring a substantid startup cost. The result is a repeeted pattern of shifts illustrated in Fig.
3. This behavior is captured by the daily shape of the vector my,”.

2.5.2 Modeling Supply Uncertainty

In modding the random component of the daly supply vector we agan apply principd
component anaysis, using afirst order approximation (one PCA vector),
by =My, + WV
The shape of the principd component, Fig. 17 and Fig. 18, is strongly rdated to the unit
commitment decision of the generators.
The process defining the evolution of the weightsis Smilar to that used for the load process:
€.~ & =-a'e) +s .7
db.q - df =k®+s M2,
where,
& =w’-d’.
The mean reverting component e reflects the transient characteristics of the supply process
This includes short-term fud price spikes and short-term gaming. These effects are temporary

and die out at a rate governed by a. The reverson of supply to its long-term mean is illustrated
inFg. 9:
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Fig. 9: Reversion of supply weights we to long-term mean di,,”

The nonreverting component d’ models the long-term availability of generation. This will
include any new ingtalled or retired capacity on the market.
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25.3 Modding Unit Outages

So far our supply modd has included smooth changes in the behavior of the supply bid curve,
which can be characterized by an Ito process [9]. However, there exist a set of high impact, low
probability events that cannot be gpproximated trough random walk type models. One such event
is the unexpected falure of a mgor generator in the market. There are a number of unknowns
associated with this event:

1. The probability of an outage in agiven day.

2. Theimpact of the outage on market price.

3. Theduration of the outage.

The answers to dl three of these questions generally depend on the type of generation
technology.

In our model we address these problems by adding a new factor to the supply process:

by =Hp, WV + A Py -

1. The probability of an outage occurring in a given day is modded as a random incidence
process, specificdly a Bernoulli process. The probability of the outage occurring in a
given day is independent of al other time intervals. This is denoted by the variable p',
where p' = 0 under norma conditions, and p' = 1 when there is an outage in a plant of

technology i.
?
? ($'MWh) oo
A .
= = = Peking
400
200 F——————— |
I |
l |
| | >
0 6 12 18 24 hOUI’S

Fig. 10: Dally shapey for a400 MW base load plant and 2200 MW peaking plant

2. The impact of the outage on market clearing price will depend on the capacity of the unit,
and its characteridtic operating schedule. An outage in a plant, which is scheduled to
deliver a full cgpacity, results in a pogtive shift in by, equa to the capacity of the plant.
If however the plant was not scheduled to deliver (ie. bid in above market clearing price)
then there is no effect on the price. The probability of a plant being selected to produce in
a given hour generdly depends on its cost structure, and therefore on its technology. We
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incorporate this effect by assigning a [24° 1] vector y ' to each technology i. The vector
denotes the capacity of the unit as wel as the likedlihood of the unit being scheduled in a
given hour. Fig. 10 denotes the daily shape of y for two types generation technologies, a
400 MW base load plant, and a 200 MW peaking plant.

3. The outage duraion is modded as a determinisic minimum outage time plus a stochestic
Bernoulli component. By combining this process with the random arivd time of the
outage (described in (1)), we can characterize the process for the State pid as a Markov
chain, as illugraed in Fig. 11. Here the numbers next to the arrows designate the
probability of a date trandtion for a given day. The probability of going from norma
operation to an outage for each day is given by | o. The probability of the unit returning
on-line dter the minimum outage period is gven by |i,. For the case shown the
minimum outage time is four days.

1 1

Fig. 11: Modeling of outage duration for the state p'q as aMarkov chain

254 Modding Scheduled Maintenance

Scheduled maintenance can be modded in the same manner as unit outages. The only
difference is that the p 4 becomes a determinigtic rather than a stochastic Sate variable.
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26 Summary of the Bid-based Stochastic Price M odel

The following is a compact summay of the mathematicd model underlying the Bid-based
Stochastic Modd.
Spot Price Model:

Hourly price: P, = e

Daily 24-hour vector of prices P, = e«

Load M oddl:
Ly =Hp+WVp,

+by,

el o =-a‘ef +s 2
i df =kt +s 192
where,
e, =w;-d;.
Supply Model:
by =Hp, +WEVE + A PY 1 -
i
€. - € =-a’g +s 17
b, - df =k P +s "2,
where,
el =wd-dp.
and pg is Markov process with parameters| o, and | i, as described in the previous section.
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3 Calibration of the Bid-based Stochastic M odel

Cdibration of the Bid-based Stochastic Model (BSM) consisted of severd deps. It used
higoricd data on aggregate hourly market cdearing load in the sysem and on market clearing
price, as determined a the New England power system eectricity market for the particular hour.
The load history encompassed 18 years of hourly load data (1980-1998), whereas supply data
(hourly market clearing price) were only available for the 14-month period between May 1998-
June 2000. Both fundamenta processes were independently calibrated using respective data.

Cdibration of BSM is a two-part process, as shown in the flowchart on Fig. 12. In the firg
part, data is gathered from the sources, filtered and reformatted. This is mainly done by hand
usng Spreadsheet program, or smple filtering programs desgned in Matlab. Paticular steps
differ between load and supply process models, as the models play different rolesin the BSM.

Read data

!

Data Formatting
Filter out weekends
Determine supply curve shape

!

L cad/Supply Model Calibration
- Extract seasondity
- Principa Component Analyss
- Linear Regresson

I

Write calibrated parameters

Fg. 12: Howchart of the UVM cdlibration

The second part conssted of model cdibration to data, prepared in the first part. It was to a
great extent uniform in both models, dthough they were cdibrated independently and separately.
In this step, seasondity in load and supply modeds was taken into account, and the parameters of
the both modes were cdculated usng Principd Component Analyss and Linear Regresson.
The generd flowchart is presented in Fg. 13.
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Read data

!

Daainitidization:
Filter out weekends

!

For month = 1 to 12 compute:

Monthly load average for each hour:
1

&
m= o X
H YDda:.l d

Principal Component Analysis
Compute:
- Firgt Principa Components nm
- Load weights wy

:

Compute series of long-term weight averages.

BSM TBSM
D
Ay - dy =k +5 7 dn :iéwd
D 42

:

Linear Regression Analysis
Compute:
- Meanreverson rate a
- Monthly volaility of theweights s,
- Long term drift parameter k
. Volatility of the weights means s ¢

:

Write cdibrated parameters

Fg. 13: FHowchart of the BSM cdlibration
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3.1 Calibration and outages

The modd of supply process in its origind form facilitates description of outages. Although
more flexible, it would make cdlibration harder snce it would require actud data on generator
outages dong with price data Another possibility would be to assume information on outages
from the jumps present in supply bidcurves. Information on outages could then be inferred by
measuring the skewness of probability density function from lognormd distribution of the bids.

For the purpose of cdibration, the supply process by was in our case modeed in a Smpler
form without outages. It was therefore possble to postulate the evolution of the daily error for
both fundamenta processes, L4 and by in the following fashion

€, -6 =-ae,+s z,

By subdituting the wy and dg parameters into the equation, we can get evolution of the daily

weights.
a1~ € = Wy - Ayyq - Wy +d :a(dd - Wd)+s Zy

The daily weights therefore emerge as a result of the mean reverson to the dailly mean, long
term drift of the mean k, and the two independent stochastic processes with their respective
volatilitiess and s®.

W, - W, =ald, - w, )+k +s 28 +s 2,

w,,, =(1- a)w, +ad, +k +s z,+sZ

3.2 Application of PCA to BSM
321 Loadsde

We wanted to cdibrate the Bid-based Stochastic Model using the New England load data, of
which we had 18 years to our disposd. With a hdp of a Matlab-based computer program, we
have cadculated the matrices v and m Using the PC Analyss, our goa was to reduce the order of
vfrom[12" n” 24]to[12" |~ 24], wheren=24 and j = 1. Load was modeled as

Ly =ph+8 W24 ®
i=1
The monthly average daily shape of load, my" for 24 hours and 12 months for New England is
shown in Fig. 6 and the principd components in Fig. 14. Time series of daily load weights wq-
reverting to the long-term mean d,,- for New England for the years 1980-98 can be examined in
Fg. 15.
As expected, the load data of a particular hour in sngle month were highly corrdlated, so by
usng only the firs PC we were able to account for over 90% of the variance. The variance (in
%) explained per month by the firgt PC isshownin Tab. 1.

Tab. 1: Variance of load explained by the first PC for different months

Month 1 2 3 4 5 6 7 8 9 10 11 12 Avg.

Var (%) 92.78 | 95.12 | 94.60 | 93.37 | 94.13 | 96.33 | 96.75 | 96.46 | 93.91 | 94.27 | 93.06 | 93.36 [ 94.51
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1. PC Daily Load Weight (MW)

Principal Components of Deviations from Daily Load Shape, Nu
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Fig. 15: Load weights of the 1. PC, wy", and monthly average dm", New England
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Daily shift of supply curve, Mub

Size of supply curve shift - b

Month 0 0

Hour

Fig. 16. Average monthly pattern of supply shift m,°, New England

3.22 Supply sde

At the supply sde modd, we wanted to moded the evolution of the bidcurve shift factor b that
appears in the price model equation.

Pd = g a*bu (2)

Similarly to our derivations for load, we wanted to apply PC decompostion to obtain the
following expresson for b

bd=p§+§w3i?ﬁi, d=1..n, m=1.12 (3)

i=1

The monthly average shape of hourly shift of price curve, my? for 24 hours and 12 months for
New England is shown in Fig. 16. Time series of daily supply curve shift bg and my° for New
England for the years 1998-2000 can be examined in Fg. 15. The full st of principd
componentsisshown in Fig. 17, and the interplay between the first two PC-sin Fg. 18.
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Principal Components (24) of Deviations from Daily Supply Shape, Nub

Size of supply curve shift - b

Month 0 o

Hour

Fig. 17: Principa Components of supply shift vim°, New England

To cdlibrate the supply side of the BSM using the New England supply data, the problem was
that we only had 14 months of hourly b avaladle. To use a full-9ze PC Andyss, the number of
ingances in data (in our case workdays in a month) should be a least equad the number of
origind varidbles, in our case the number of hours andyzed. Since on average there are only
about 22 workdays in a month, we would require a least two instances of each month, raising
the required number of monthsto 24.

To extend the available amount of data, three gpproaches were investigated.

1. Duplicating the missng months to obtain 24 months worth of data Since data are result of
two diginct dochastic processes, this would dgnificantly dter data beyond usability,
introducing a determinitic pattern.

2. Tregting the entire year as composed of 12 equa months, thus introducing a single set of |
principa components. As the PC andyss is used to mode deviaion from the monthly daly
load pattern my, this gpproach would have adverse effects on the amount of information

retained by the modd. The invedigated timescdes for load pattern m and principd
component matrix v isoutlined in Tab. 2.

Tab. 2: Effects of different modeding timecde

m % Result
1 | yealy yearly Some of the effects
2 | mothly | yearly cancel each other out
3 | monthly | morthly | OK
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3. Tredting every month separately, but using reduced number of varigbles to caculate PCs.
In our case, only 12 odd hours were used as origina variables, reducing the order of PC
12]. For the reduced order of the problem, data on single month (at
leest 20 days) were aufficient. After the matrix v was cdculated and the number of
retained PCs determined, vy, for the missng 12 even hours were interpolated. The
interpolation of vaues of PCs is acceptable snce price shifts between hours aways occur
continuoudly, i.e. there are no stochagtic jumps between hours. Tab. 3 presents the amount
of variance explained by the first five PCs.

marix n to [12 " j °

Tab. 3 Variance of supply (in %) explained by the first four PCsfor different months

Month 1 2 3 4 5 6 7 8 9 10 11 12 Avg
PC
1 5012 | 36.08 [ 6498 | 6350 | 4918 | 4568 | 6429 [ 5157 | 5210 | 86.92| 5947 | 5399 | 5222
2 1958 | 1990 | 2137 | 1196| 4225| 2822 | 1471 | 2498 | 1321 | 800| 1213| 2316 | 1857
3 1230 1866 | 430 932| 409| 1144| 917) 1341) 1175| 174| 1065| 956 9.18
4 699 872| 331| 834| 132 474 564 341 721| 131| 504| 407 493

Here, the choice of only one PC is less obvious than in the load data. An average amount of
variance explained by esch of 12 origind variables is 833 %, so according to guiddines
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(Appendix A) we should have in some months consdered usng two or even three PCs.
However, we have decided to use one PC since on average, the variance explained by it was
52.22%. Conddering many assumptions we had made with regards to modding of supply
function, the error made by omitting other PC was not crucial and was therefore acceptable.

3.3 Estimation of the parameters of the BSM

The Bid-based Stochastic Mode can be expressed in the state space as:
X = AX, +Bu, +Q?,
y, = CX, +Du, +RX

It can be shown thet the modd is controllable and observable. The parameters of the BSM
could be jointly estimated usng standard estimation techniques, such as ether Extended Kadman
Filter or the Maximum Likdihood Edimaion method in conjunction with Iterative Kaman
Filter, as outlined in the Appendix B.

The problem of joint esimation of sysem and noise parameters has been solved in the
literature for smpler problems [5], [6], [7], [8]. However, there are dgnificant differences
between our problem and others. Some of the gpproaches were using a smpler two-factor mode
or assumed risk-neutrdity, which does not hold true in dectricity makets Others were
describing  price directly without relying on underlying fundamental processes of load and
supply, so they could use additiona data on forward prices. Since in our case forward markets on
load or supply shift do not exist, we could not use thiskind of additiond information.

The dandard edimation techniques usudly assume known covaiance matrices of the
stochagtic processes in the modd, i.e. process noise covariance matrix Q and measurement noise
covariance matrix R. Alternatively, other techniques for estimation of noise covariances require
complete knowledge of other sysem parameters. Since among the unknown BSM parameters
there were aso the stochastic process variances s and s¢ the dements of the matrices Q and R,
the standard estimation techniques failed to converge.

The parameters had to be edimated separately in severa consecutive steps, in which the
parameters were estimated independently. Since the load and the supply processes are described
in a Smilar way in the modd, their parameters a‘, kb, sb, s'%and a® k °, s® s ™ can be
edimated separately and in the same way.

Egimaion of the Bid-based Stochastic Mode parameters can therefore be summarized in
three successive phases.

1. Long-term drift of the mean k is edimated usng linear least squares fit. After k is

determined, datais de-trended, i.e. the long-term drift is diminated.

2. Calculation of mean reversion factor: Factor a, determining the mean reverson speed
of the weight process can be estimated using linear regression over de-trended data.

3. Estimation of process volatilities: Usng the edimated a, the remaning parameters of
the model h state space form s and s can be estimated using the adaptive Kaman Filter
and the technique for identification of the variance-covariance matrices of the process
and measurement noise Q and R, [3].
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3.3.1 Calculation of mean reversion factor in the BSM

The evolution of weights can be cdculated in the following way:
=(1-a)w, +ad, +s z,+k +s ‘2
After assuming the initid vaues of (dp = 0) and the linear trend dready diminated from the
datain the previous step (k = 0), the following sequence of equations unfolds.
w,=(1-a)w +ad, +s z +s°F
=(1-a)w +ad,+s z +as ¢z +s¢Z

& st
d [o]
Wk+l:(1-a W, +S z, +S gaa z
j=0

)
=(-a)w+s z+as 7 +s°7
)

&IIO:

The last equation could be rewritten as
W, = (1-a)w + A

1 .
A =sz +Sd§é z? +zg%
j=0 (%]
Since the part of the equation, denoted as Ay, is influenced solely by zero-mean processes z
and 2. it is a zero-mean process.
A » N(01)
It is then possble to edtimate a usng Linear Regresson over the time series vectors of
weights wy. The vector wg is shifted in time for a day ahead compared to wy. The operator a
denotes least- squares it of the two vectors[13].

a=1- (wy,aw,)

Although Ak is a zero-mean process, its variance is a cumulative sum of the variances of the
underlying stochaedtic processes. The variance therefore grows repidly with the number of
samples consdered in the regresson procedure. Using the full set of samples (some 4500)
rendered very unrdigble estimates of a. It turned out that a more reliable estimate could be
obtained using between 1500 and 50 samples.

The development of estimates of a® for the load process is shown in Fig. 19 and for supply
process, a®, in Fig. 20. As the number of samples used in estimation decreases, the vaue of a
converges to its actud vaue. The two curves show evolution of the estimate when using data
from the beginning or from the end of the series.

A summay of the estimated parameters of the Bid-based Stochastic Modd for both load and
supply processes are shownin Tab. 4.

Tab. 4: Estimated parameters of the BSM

Load process | Supply process
a 0.3 0.75
K 4 -1.7e-3
a 1.13484e-4
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34 TheTime-scale Separated Bid-based Stochastic M odel
3.4.1 Introduction

The Time-scde Separated Bid-based Stochastic Modd (TBSM) evolves from the daly Bid-
based Stochastic Model as we introduce the assumption of time-scale separation between the
fast, short-term and dow, long-term processes. The assumption significantly reduces complexity
of the modd and therefore the computationa burden necessary in potentia mode applications.

The TBSM podulates time scale separated development of the daly welghts in load and
supply curve shifts. In this modd, the daly weights wy revert to the monthly mean dp,, yet both
dates of the modd evolve on a different time scdes. We define a dally error of the weight g as
the difference between daily principa component weights wy and their long-term mean d,.

& =W, -d,
where
€~ € =-a € +S 7,
d ,-d =k+s?Z

Typicdly, m >> d, with m denoting monthly and d dencting daly vadues. As the properties of
both models differ subgtantialy, the vadues of ther parameters differ Sgnificantly as wel, Tab.
4,

The assumption on time-scale separation was introduced to facilitate smpler cdibration of the
moded. As a trade-off, severd issues with he Time-scae Separated Bid-based Stochastic Model
arise.

1. Time scade separaion is not genuine: the time congtant of the monthly process T, is not
aufficiently larger than the one of the daly process Tq to warant the separation
assumption.

2. The weght process does not fully revert to the mean within one month, s0 it is
mideading to compute the long-term mean as an average of the weights over a month.

1 &
dm = Wy
mt=Tmn,

Because of this, the long-term mean in the TBSM is larger than the actud mean, d"™®V >
d®M. Since the weights in the TBSM revert to a larger mean, the speed of mean reversion
a M > 3 BM s necessarily greater than the actud one.

3. The jumps in the d™®M are criticd and unacceptable for Unit Commitment under

physicd congraints.

3.4.2 Calibration of TBSM

Although load and supply processes describe different physcd phenomena, the BSM
postulates a smilar structure for both of them. Caibration of both processes, dthough performed
separately, therefore follows the same pattern.

From the time series of daly principd component weights wy, the parameters of the modd,
which govern mean reverson of the wg, a, and long-term drift of the mean dm, K, needed to be
determined. The following steps describe the procedure.
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1. Wecongruct a[D" 1] time series vector of principal components weights wy, W.

w :[Wd], d=1..D

2. For every year and for every month within the current year, a mean of wy, dm, was
cdculated. D is the totd number of days in the data, while Dy, is ther number in the
current month.

B
I QJ°§

[LLY

o
1

w,, m=1.12

3
[=%

(4)

w)
I

3 Qog O
o

The [12" 1] vector of monthly meansd* could then be defined as

ar=[d, ] m=1.12

We could dso definea[D” 1] vector d, defined asadaily time series of dp,.

d=[d ] d=1.D,, m=1.12

3. The mean revarson of the daly weghts wy to the pertaining monthly mean dm is
described as

Wysp - Wy =@ (dm' Wd)+s mZd ®)

where the change in weights is determined by the mean reverson part and the stochadtic
component, smZi. The stochastic process zy is normdly digributed with a zero mean and
standard deviation of one.

z,» N (0,1) (6)

The mean of the stochastic process is zero and is not affected by the process voldtility
measure, sn. Coefficient a could therefore be determined using linear regresson as the
dope b of the "best fitting" regression line to satisfy the least-squares criterion [13].

y'=a+bx
éD (Xd - ;(Xyd - 9)
b:dzl
& -\
& (x - %

d=1
The regresson is performed over the time series vectors of weights w and monthly means
d. A shift of the vector wy for aday ahead is denoted as Wg+1.
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X :[Xd] :(Wd+1' Wd)
y =[ya]=(d,- w,) (7)
a=>b

4. Udnga, avector of estimated welghts w1 was obtained:
WEHl :adm + (1' a)Wd (8)

5. The difference between the estimated Wgi and wgy was the contribution of the

stochastic component of the process, smzy. It was therefore possble to cdculate the
monthly voldility messure s, of the process by subtracting the estimated values of Wgq
from the actud vaues wygq and caculating standard deviation of the parts of the time
series vectors, belonging to a particular month:

S, = StDev(wg‘+1 - W +1), m=1.12

StDev(x) = L 35 1‘|’3x92 ©
- D-1‘i"}1 X D% s

6. The parameters of the weight mean process d,, have been determined using linear

regresson. The drift parameter k has been cadculated as a mean difference of time shifted
time series of the monthly meansd.

7. Withthehdpof k, a[D" 1] vector of estimated weight means d'q.1 was calculated:
d'y. =k +dy (10)

8. Smila to monthly voldility in w, the volaility messure s¢ of the mean process was
cdculated by subtracting the estimated vaues of d'gq from the actud vaues dg and
computing the sandard deviation:

s ¢ = SDev(d,,, - d}..) (11)

After applying the agorithm to both processes, the 1% principal component's weights of load
wg- and of supply curve shift w®, a set of parameters of BSM was obtained, presented in Tab. 5,
Tab. 6 and Tab. 7.

Tab. 5: Calibrated parameters of the Load in TBSM
a L kL S mdL
Load | 0.0204105 | 75.4766 2023.60
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Tab. 6: Monthly cdlibrated parameters of the Supply in TBSM

a aP KP g
Supply | 1.13484e-4 0.0318440 | -0.0536667 0.413067
Tab. 7: Monthly cdibrated parameters of the TBSM
Month | Load volatility measure s " Supply volatility meesure s
1 876.755 0.200464
2 674.219 0.081697
3 477.651 0.350756
4 468.729 0.375337
5 831.078 0.384563
6 679.871 0.324813
7 1092.886 0.364438
8 748.013 0.104237
9 1030.650 0.177193
10 371.965 0.409969
11 779.300 0.134920
12 862.887 0.225309
Average 684.154 0.2410%4

A comparison of the cdibrated parameters between the two versons of the modd, BSM and

TBSM, isshown in Tab. 8. The variances s " and s m° in TBSM are 12-month averages.

Tab. 8: Comparison of estimated parametersin the TBSM and BSM

L oad process Supply process
TBSM BSM TBSM BSM
a 0.0204 0.3 0.0318 0.75
k 75 4 -0.0537 -1.7e-3
S 685 0.2411
s¢ 2023 0.4131
a 1.13484e-4

An important difference between the TBSM and BSM is aso the speed of reversion to mean,
a. In case of BSM load process, a" is about ten times larger than in TBSM, wheress the factor is
about 20 times bigger in case of supply process a° In the BSM, the long-term mean process d
evolves daly. Although the weight process wy responds to stochastic influences in load and
supply processes, it reverts to the long-term mean fagter than in the case of TBSM where the
mean evolves monthly.



4 Smulations

The BSM podulates the market-clearing price as an exponentid of the two fundamentd
processes, load and supply.
Pk — eal_k+bK
Both processes - supply and load - can be described in a smilar way as a [24° 1] vector X
using generic formulation.

Xd :p'm +§. \N:i’)lm
i=1

Wy, - W, :a(dd - Wd)+S mZd
dg.,-d =k +s %

By cdibratiing the modd to higtoricd data of load and supply data, we obtain the vaues of
parameters that determine the evolution of the load and supply processes on:

the monthly timescale: the [24" 12] matrix of average monthly 24-hour daly profile my
and

within a day on the hourly timescale: the [24" 12] matrix of monthly principd
components V.

These parameters are independent of the type of modd we use for cdculation of daly
welights.

At the same time, we obtain the parameters that govern the evolution of the dally weights wy;
mean reverson speed a, long term drift k, a [24" 1] vector of daly weght voldilities s, and
long-term meen dgq voldtility s ¢

Usng smulation it is possble to investigate the properties of the two fundamenta processes -
load and supply, which drive the price in both modds. The smulation dso endbles us to
illugtrate their influence on the price.

For the purpose of smulation and demondration of the properties of the modd only, the BSM
volatility messures s and s were approximated using the known parameters of the TBSM.
Since these values don't represent true estimates, they were annotated ass* and s .

The daly weight process wy evolves on the same timescale in both TBSM and BSM
modds, S0 their volatility measures should be roughly the same,

STtBSM = S 'Baw.
The long-term mean on the other hand develops much faster, and its volatility should
therefore be much smaller, divided by a square root of the time congtant factor. Assuming

that there are about 25 working days in a month, the daily volatility should be about 5
times smdler,

, s
S bwm = \T/?l_—/M1 T @5 days

The amulations were performed usng ether the Bid-based Stochastic Modd or Time-scale
Separated Volatlity Modd, cdibrated to the short-term market-clearing price. The smulations
investigated the impact of different parameters for both load and supply processes on the output
of the model. The following properties were investigated:
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1. Evolution of the average daly short-term market price (spot price) of dectricity, as
influenced by the average monthly 24-hour profiles, mnt and my°, and monthly principa
components V- and V™.
2. Expected vaue and Standard Deviation of the daily weights ww and WP, driven by the
daily process parameters, a, k, s m and s ¢
3. Deveopment of daily averaged hourly price.
Theresults are briefly discussed and shown in the following sections.

The parameters used in amulation are given in Tab. 9. In addition to the calibrated ones, the
parameters s' and s® were approximated to demonstrate properties of the BSM and are
presented in the shaded cdlls of the table.

Tab. 9: Parameters of the BSM, used in smulations

L oad process Supply process
a 0.3 0.75
k 4 -1.7e-3
S' 685 0.2411
s 400 0.825
a 1.13484e-4

4.1.1 Deterministic price and monthly parameters

The monthly average spot price in the actud data to which the model was cdibrated is shown
in Fig. 21. There are rdatively big differences among certain months, describing a year with
unusudly high summer prices The summer of 1999 was very hot and the prices were higher
than the higorica leves Since only a limited amount (14 months) of price data was availdble,
the influence of a single month in cdibration of supply process was stronger than in load process
cdibration, where dmost 20 years of data was avalable and the influence of excessve months
are less prominent.
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Fig. 21 Monthly average of the spot price, New England, May '99-June '00

In Fg. 22, smulated evolution of the average daily short-term spot price of dectricity is
shown, as influenced by the average monthly 24-hour profiles, my" and my®, and monthly
principd  components vin- and v’ The price as generated by the model exhibits Similar
properties as the actual average monthly price in Fig. 21. The main difference could be observed
during the summer months, where the influence of load process dampens the excessve shift in
supply curve toward higher prices, as dictated by supply process.

4.1.2 Daily weight process properties

The dgochastic properties of the mode on the other hand can be illustrated without
interference of monthly mean vaues by examining the daily weight processess wh and wP. They
are driven by four stochastic processes z*, z!% zP and z™ and governed by the daily process
parameters, a, k, sm and s Interplay of the short-term w process variances, s - and s m°, and
long-term d process variances s and sP® in the Bid-based Stochastic Modd is schematically
shown in Fg. 23. The short-term variances of the mean reverting process, which are bounded,
dominate in the short run. Astime progresses, the dominance of the long term variances prevalls.
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Fig. 22: Smulated average monthly price

Similar conclusions can be drawvn from Fig. 24, where the evolution of the mean vaue of w
and its volatility boundaries are shown. The standard deviation of the process is not uniform over
the months, what is the consequence of interplay between two volatility meesures, s " and st
At the same time, the voldtilities of eectricity price differ from one month to another. During the
periods of pesk load, prices tend to be much more volatile than in spring or fdl, which is
reflected in the mode output.

The mean grows steadily according to the long-term growth parameter k“. The weights were
samulated for atwo-year period with a10.000 smulation runs.

The mean of the supply process weight, wP, and its volatility boundaries are shown in Fig. 25.

The mean dowly drifts downwards, and the monthly shapes in standard deviaion are more
pronounced than in load processin Fg. 24.
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The means and standard deviation boundaries for both processes are shown together in Fg.
26. Here, W is scaled with the factor of the exponentid shape a  The volatility boundaries of the
supply process WP are much broader indicating the dominant source of uncertainty in the
forecasted price of eectricity isthe volatility of the supply process.

4.1.3 Daily priceusng BSM

Usng the BSM it is possible to generate hourly spot price Sr and its volatility. Because the
intrarday dynamics that can be found both in hourly development of load and hourly clearing of
market in supply, it is important to have the mode tha is able to capture the hourly price
dynamics. On the other hand, it is sometimes aso necessary to neglect the hourly dynamics and
ded with daily prices, asit isthe case in certain applications such as forward contracts.

In the Stochastic Mode the price evolves as a sequence of daily, 24-hour vectors of prices.

Pd — eaLd +by
P,=[P,] h=1.24
The daily price would therefore be calculated as a daily average of the vector Py
24
R = 2_];1?:1 Pan

In the smulation, we have examined the deveopment of the average price Py during the
course of one year. The mean and the standard deviation of prices were cadculated in 10.000
smuldion runs

Fig. 27 displays the mean vadue of dectricity price and the volatility messure (in our case
standard deviation) boundaries. Both prices and standard deviations exhibit strong monthly traits.

The gandard deviations, when presented aone in Fig. 28 show corresponding monthly
diversty but generdly agree with each other and with the observations on volaility in daily
weights.

4.1.4 Daily priceusng TBSM

The Time-Scale Separated Bid-based Stochastic Model properties have been investigated in
the same way as the properties of the Bid-based Stochastic Moddl. Using the parameters from
Tab. 4, the average dally price’ P4 was smulated for the period of one year with 10.000 runs.

The mean vdue of Py is shown in Fg. 29 together with the standard deviation as volatility
boundaries. The overal shape ill reacts noticesbly to changes in months, while the overal
impression is that the volaility is somewha larger than in BSM. The same concluson could be
drawn from andysis of Sandard deviation in Fig. 30.
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5 Applications
51 A multi-market model

5.1.1 Transmisson lineflow

We now extend the Bid-based Stochastic Modd to smulate the behavior of prices in a multi-
market scenario [17]. Specificdly we consder the case of two spot markets connected by a tie-
line of fixed maximum capacity F{"™. The god is to modd the joint evolution of loads and
electricity prices in the adjacent markets, and to show how the bid-based model can be used to
edimate the value of atransmisson right between the markets.

Fd12

Fig. 31: Two markets, connected by transmission line

Scheduled transmisson flows occur when there is cross-bidding between markets, that is,
loads or suppliers in one market decide they are better off purchasing their power in the
neighboring spot market. A postive flow from market i to market j can be caused by two types
of actions.

1. Suppliers in market i decide to bid their power into market j. This causes B to increase

and b to decrease,

2. Loads in market j decide to bid their demand into market i. This causes L to decrease and

L' to increase.

The net effect on price of the two actions is equivdent. Without loss of generdity we decide
to interpret dl flows as the effect of load cross-bidding.

To incorporate this behavior into the model, we introduce a new variable g, representing the
actua quantity bid into market i a time d. The variable L4 is interpreted as the native load of the
market, that is the load, which is physcdly located ingde the market's borders. Price in market i
isafunction of the totd load and supply bid into this market,

Pl=el" =12

The relaionship between q and L for the two-market example can be written as,

gl =L +F

d =L - R’
where F4? is the flow from market 1 to market 2, which can be positive or negative.
The power has to be balanced between the markets

da+ 05 =Ly Ly

and the tie-line flow Fy*? is bounded by F™.
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Next we need to address the question of how much cross-bidding of load will occur in agiven
day. We assume that the load isrational, and that if there exists a price differentid between the
markets, load in the expensive market will submit bidsinto the cheaper market. The magnitude
of the cross bidding is limited by the capacity of the transmission line. Thus load bids will keep
shifting form the expensive to the chegp market until one of the following occurs.

1. The prices equdize, thus removing any incentive for further cross-bidding.

2. Thetrangmission line becomes congested, preventing the loads from transferring the

power back to their own location.
The first case corresponds to the following mathematical condition,
Pdl - Pd2
a'dy +b; =a’qg +h;

The flow necessary to reach price equdity, as afunction of native load and supply dtates, is
given by,
1

1 2

s {laLi i) (L +n})]
The transmission congtraint F® limits the flow both ways.
_ Fmax £ Fd12£ Fmax
The actud flow between the markets Fq™?, accounting for the limits, can therefore be written
as,

12 _
Foo=

F? = max{m'n (Ifdlz, F”‘ax),- Fm"“‘x}.
Prices in two markets, Rt and R?, are equa adways equd, until the transmission flow reaches
the maximum capacity. At this point prices will diverge, and the dynamics of the two markets
decouples.

5.1.2 Valuing a Transmisson Right

In this section we edimate the vaue of a transmisson right between market 1 and 2. The
transmisson right is interpreted as the right, but not the obligation, to transmit power from
market 1 to market 2 in any day d. Furthermore we assume that the transmission right is frm,
thet is, it cannot be curtailled under any circumstances. The expected daily profit from owning the
transmission right can therefore be expressed as:

cy’ =Emax(r; - R0)

Thisis equivaent to the value of a spread option between the two markets.

5.1.3 Simulation of the Multi-M arket M odel

We attempt to estimate the vaue in (¥MWh) of owing a transmisson right for one day, thirty
days from today. To better illustrae the quditative effects of moving to a multi-market
environment, the following amplifications are made to the bid based price modd:
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1. Weuseadally rather than an hourly mode for price. Thisis achieved by subgtituting the
vectors nf, n¥, V-, and \P, by scalars.
2. Weignore the dynamics of the mean-process d, forcing d- and d® to be zero.
d; =d2=0
k'=k?=0
The parameters for the supply processin both markets are identica. The mean+vaue (n) of
the load is set 7,000 MW higher in market 2 than in market one, creating a price differentia.
Findly, the maximum transmisson capacity is set to 3,500 MW.

v, = 13000MW
m, = m +2F™ = 20.000MW
F.™ = 3500MW

The modd was then run 10.000 times for a 31-day period. The plots displayed below show the
distribution of loads and prices on the 31% day.
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Fig. 32 Histograms of load in two markets, F* = 0 and F*% = max

5.1.4 Smulation Results

5141 Smulation results for load

In Fg. 32, the histograms for the load in the two markets are presented. On the |eft Sde there
are the histograms of market 1, whereas the market 2 hisograms are on the right sde. The load
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histograms in respective markets are postioned far gpart when transmisson capacity is zero, and
are identical, when transmission lineis not congested.

5.1.4.2  Smulation resultsfor prices

Histograms of prices of the two markets are shown in Fig. 33. Again, the two independent
markets festure very different price distributions, while the distributions of uncongested prices
become amost identical.

Gradud variation of transmisson line capecity on two markets prices is displayed in Fig. 34,
where we can observe daly evolution of the prices. Uncorrelated at firg (TL=0), the prices
become more and more corrdlated as we increase the line capacity until they balance out. As
expected, the turning point of the corrdaion, Fig. 36, is the mark 3500MW, which is hdf the
difference in load between the markets.

5.1.4.3 Value of a spread option as a function of transm. line capacity

The higograms on Fig. 35 show the smulated digtribution of spread option vaue, based on
price difference between two markets. As the price in the two markets balances out, the value
diminishes

As the transmission line sze increases, the markets become more and more @rrelated, at the
same time diminishing price spread and the spread option G vaue, Fig. 36.
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Dally P, and P, TL=0

Daily P, and P, TL = 17350
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Fig. 34 Dally evolution of price in two markets with various TL capacities
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5.1.5 Interpretation of Smulation Results

From the hisograms of prices in the previous section we can see how the capacity of the
transmisson lines affects the probability didribution of regiond spot prices. Furthermore, the
cgpacity of the line is strongly linked to the corrdation of the two spot prices. This in turn affects
the value of the spread option/transmisson right. The higher the corrdation between the market
prices, the lower the probability that they will diverge dgnificantly. Therefore the vdue of the
transmisson right isinversaly proportiond to the correlaion of their prices, asshownin Fig. 36.

The advantage of the bid based modd is tha we make a quantitative link between the size of
the tranamisson line in MWSs, and the vdue of the tranamisson right in ¥MWh. This has
implications far beyond the smple vauation of trangmisson contracts. Congder the postion of a
for profit transmisson provider who is contemplating whether to add a new trangmisson line
between two markets. He needs to know whether he will be able to recover the fixed cost of
investing in the line by sdling transmisson rights to market participants. By cdibrating the bid-
based mode according to current price levels, and then adding the capacity of the new
trangmisson line, the transmisson owner can sSmulate future cash flows, and edtimate the
profitability of the invesment.

5.2 Generation asset valuation with unit commitment constraints

The question of how to vaue gneration assts is critical in a competitive power market. This
problem is typicdly agpproached by defining the generator in terms of its efficiency (heat rate), in
converting fue to dectricity. Based on this rating, the vauation is peformed by modding the
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generator as a pread option between the price of the fud used and the price of eectricity. The
payoff from such an option is given by
CF, = max{P:- C(P!),0}

where P is the price of dectricity and C is the cost margind cost of production as a function
of fud price P,

This formulation however ignores severad important condraints involved in the operation of
the unit, such as dat-up and shut down cods, minimum run time, and maximum ramp rate.
These condraints have a dgnificant effect on fow units are bid into, and dispatched by, the spot
market operator, and therefore on the owners cash flow. By ignoring the unit commitment
condraints, one is likdy to undervaue plants with dgnificant flexibility (such as micro turbines
and fud cdls) while overvauing large inflexible foss| plants

The reason why the unit commitment problem is often ignored in the vauation of a power
plant can be linked to computational complexity. In genera, the operator of the unit has to solve
a complex dynamic programming problem to arive & the optima unit commitment decison for
the generator. This is a computationdly intensve problem, which grows exponentidly with the
time horizon over which the optimization is caried out. While it is feasble to solve the unit
commitment decison for a day ahead bidding problem, it is extremely chalenging to extend this
notion to a multi-year vauation problem.

By applying a principd component-based price model, we are able to define today’s net profit
from the generation asset as a function only of today’s and yesterday’s average spot price. By
goring the mapping from the state of the spot price to the cash flow of the generator in a lookup
table, we ae ade to Smulae generator profits over multiyear periods with minimd
computational complexity. The modd aso dlows for sochaestic fud prices. This gpproach is
described in detail in [20].

53 Modeling of the long term dynamics of the electricity prices

The success of deregulation cannot be measured based on short-term changes in eectricity
price levels. The reason many nations are going through the painful process of introducing
competition into the dectric utility industry is to induce technologica innovetion and create the
right long-term incentives for future invesments into the market. These two results are highly
interdependent. The arrivad of improved, cost efficient solutions to generate eectricity leads to a
surge of new investment as old, inefficient generators are pushed out of the market.

Because it decomposes price movements into supply and demand components, the bid based
price modd lends itsdf nicdly to andyss of the interaction between technologica innovation
and investment. A possible extenson of the mode to ded with this gpproach is to change the
form of the supply mean process d°. We postulate the form as

dkb+1' dE =k b(l E—T - Fk—T)+S dozckib'

In this formulation, I,® is an index representing the cost efficiency of the most attractive
generdiion technology avaladle a time k. Fy represents the average forward price over the next
twelve months (currently forward prices are not available beyond this horizon). According to the
formula, the growth rate of the supply bid curve (note that a negative shift in d represents an
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increase in the supply) is proportiona to the difference between the cost of production index and
the forward price. The raionde is that if the forward price goes far aove the cost of production,
the expected profit from owning a unit will be high, and there will be a rush to inves in new
generation. Note that we have included a delay term T in the index as well as the forward price.
This corresponds to the delay between the decision to invest in the unit, and the time that the unit
actudly comes onrline The smulation and further andyss of this formulation is left for future
work.
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6 Conclusion

A wide range of literature has evolved on the modding of dectricity markets, and the
associated price dynamics. In the introduction we listed a number of gpproaches, quantitative,
cost based, economic equilibrium, agent based, and experimentd, dl with ther own advantages
and drawbacks. The modding approach used is generdly dependent on the type of problem
addressed. A marketer may use one type of mode for optimizing the short term bidding of
asHs, another for hedging in the forward markets, yet a third modd for evauating invesment
decisons. Ultimately, the user would like dl of these modds to reflect the best current estimate
of the future. However, given the range of modding approaches, it is often hard to check
whether the models used are consstent with each other.

The bid-based modd presented in this report is intended as a fundamenta modd for
electricity price dynamics, and is to be used in a wide range of applications. The emphass was
placed on incorporating the unique characterigtics of dectricity prices, including seesondity on
multiple time scdes, lack of load dadicity, stochastic supply outages, strong mean reverson,
and stochastic growth of load and supply.

The second emphass was reducing the computationa complexity of the modd. This was
achieved by applying techniques such as principd component andyss, which reduced the
dimensondity of the modd dradticaly, with aminimal lossin performance.

A timexde-separated verson of the modd was calibrated on rea market data (New
England). The lack of price data on the market makes the cdibration on the supply sde of the
modd tentative, but as more data becomes available, the parameter estimates will become firm.
The scheme for cdibrating the origind verson of the modd is outlined, but its implementation is
left to future research.

Multiple extensons of the mode ae possble to support a number of crucid decison
problems in the market. We illustrated how a two-market verson of the modd can be used to
edimate the vdue of trangmisson rights in a multi-market environment. This is applicable not
only to market participants who wish to purchase these rights, but aso tas tremendous impact on
the decison meking of future for profit transmisson owners. A second gpplication of the modd
is illugtrated in the vauation of generation assets with unit commitment condraints. Here the use
of a principa component based model dlows us to greetly reduce the computationa complexity
of the problem as illusrated in [20]. Findly, a new verson of the modd is proposed, to examine
the long-term interaction between technologica innovation and price trends.

The creation of a modd which mimics the fundamentd behavior of the market and its
underlying physcad and economic components lends itself to a number of further extensons,
opening the door to future research possibilities.
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7 Appendix A: Derivation of Principal Components

Usng the Principd Component Andyss (PCA), it is possble to reduce the dimensondity of
the problem by defining the new orthogona bass PCA generates a new orthogond set of |
variables j £ n, where n is the number of the origind variables in the observation set. They are
cdled Principd Components (PC). The new variables are sdected so that those describing the
same driver can be replaced with a single new variable. Each principa component is a linear
combination of the origind variables Because PCs ae orthogonal to each other, there is no
redundant informetion.

The firs PC is a sngle axis in space. When each observetion is projected on that axis, the
resulting values form obsarvations of a new vaiable, the variance of which is the maximum
among dl possble choices for the firs axis. The second PC is orthogond to the firg, and the
second variables variance is agan maximad among al possble choices for this axis. As more
and more PCs are sdected, they contan less and less vaiance. A smple two-dimensond
exampleis shown of Fig. A.1, where vector X can bewrittenasin (4),j =n=2.

X=ay +a,y,+...+a,y, =bp,+bn, +...+bn; (12

The totd number of PCs is usudly equa to the number of origind variables n. However, the
firde m PCs usudly account for most of the variance in the origind obsarvations, j £ n. Sum of
variances of the new variables equals sum of variances in the new variables.

& va(n) =4 var(y) (13)
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Fig. A.1: A two dimensond example of PC derivation for vector X

The iterdtive procedure of principd component derivation can be summarized in the
following seps
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1. Find the largest PC: maximize the varianceof by ?, =b,p, +...+bn:
max [var(b;x) =b/Cb,| st bJb,=§ bZ=1
i=1

where b, is the vector of weights of the firgt principa component n; and C is the covariance
matrix of x. The condition of b'b = 1 is necessary for the unique solution to exist; otherwise the
weights could become arbitrarily big, leading to infinite variance.

b, =[o1.byy0. by, ] T

%= [n111n121---’n1n] !

2. Repest the process for the subsequent PCs, until number of PCs = rank(C).

3. Determine, how many PCs are necessary to describe the process adequately. Form the
reduced-order principal component [j ~ n] matrix n’, where only the firss m PCs are retained. A
detailed description of the routine can be found in [11].

The eigenvaue |, associated with +th PC corresponds to the equivaent number of variables
this PC represents. A PC with an eigenvaue of | ; = 3.9 describes as much variance as on average
3.9 origind variadles. By dividing the eigenvadue with the totd number of PCs j, we can obtain
atota percentage on variance explained by each PC.

When dl n PC have been determined, it is necessxry to determine j, how many PCs are
necessary to describe the data accurately enough. The three most common measures are;

1. Retain al PCsthat represent more variance than origind variables on average (itsl j < 1).

2. Scree test. The incrementa plot of variance accounted for by every PC is caled scree plot.
The number of points before leveling-off of the curve isthe number of PCs retained.

3. Totd variance of the data accounted for by the retained PCs. Some authors propose to
retain as many PCs as to account for about 90% of the variance [12], while others propose less
stringent criteria, depending on the reasons for performing the PCA [10].



8 Appendix B: Joint parameter estimation using MLE and KF

Unknown parameters of the stochastic modd can be esimated usng Maximum Likelihood
Edimation (MLE) coupled with Kaman Filter (KF) dae edimator. The iterative procedure
esimates parameters of the modd as to minimize the likeihood function and then computes the
resulting system response usng Kdman Flter. In the gpopendix we derive Kdman Flter and
outline the MLE procedure.

8.1 Derivation of Kalman Filter

A Discrete Kaman Filter is a technique for estimation of dates of a stochastic system [1]. It
consgs of a st of mahematicd equations and provides an efficient recurdve solution of the
least-squares method. It addresses the problem of estimation of dtates x of a process, described
by stochadtic difference equations

Xiq = AX, +Bu, +H,?,
where A is the syssem matrix, rdaing the sysem date x; a time t to the next date X at time t+1
in the abosence of the contralling input. B is the matrix reaing the input u; to the State x;. The
measured noisy system output at timet y; is
yt = Cxt +et

The random variables h; and e; represent process and measurement noise. They are assumed

to be independent of each other and with norma probability distributions.
?,»N(0Q)
e » N(O,R)

To write the BSM in the state space form, the system date X, the process noise hy, the input u;
and output y signas, the sysem matrices A, B, C and G, and noise covariance matrices Q and R
take the following vaues.

X _ gnu o AU y, =[w] u _cu

t gth k gzgg t t k &H
d-a,au & U &,s%U

A= g 1 B=ag c=[10 G=é '
¢ a1 PTay ORI etglg
él, Ou

Cgyg R

8.1.1 Kaman Filter

Let's define f(m/t as our apriori estimate of state vector at step t+1, and im/”lour a poderiori

edimate of date vector a t+1, given measurement z.;. We can then define a-priori and a
posteriori estimate errors e.1; and ey as
et+1/t =X - §(t+1/t
et/t =X - it/t
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An estimate of the apriori estimate eror covaiance is therefore Py, while of apogeriori
estimate error covariance being Py;.

Pt+]/t = El.et+1/t elr]/tJ
Pt/t = El.et/t e:}t]
The dgorithm of Kaman filter computes the equation that produces the optima a-podteriori
edimate X,,,,8 a linear combination of the a-priori esimate X,.,,and a weighted difference
between an actud measurement z and predicted measurement C)?Hm. When they agree
completely, theresidud ¥,y is zero.

XI+1/I+1 = )2t+:l/t +K t+1(yt+1 - C)A(tﬂ/t)
The factor K in the equation is cdled Kaman gain and is chosen in such a way as to minimize
the a-posteriori covariance Py:.

8.1.2 KF Algorithm

The Kdman filter agorithm is iterative procedure, that estimates process dates as new
measurements become available in each time step. Using initid estimates of sysgem dae Xgo and
a-posteriori error covariance Popo, it computes the optimd apoderiori etimate itﬂ,tﬂmd the

pertaining Kalman gain K. The procedure is described below:

1. Sdectinitid esimates: X i, Py,
2. Compute time update (prediction) equations:

>2t+1/t = Ait/t +Bu, a-priori estimate of state vector x
Py = AP, AT +GQG' a-priori error covariance matrix

3. Compute measurement update (correction) equations:
K ia =PogClulCuPuyCl]* Kamengain
Veare = Yoo - K residud: measurement innovation
im/m = >2t+j/t +K 1 Ve aposteriori estimate of sate vector x
P = [I - K t+1C]F>m/t apogteriori error covariance estimate

4. Repeat 2and 3foral t1 [1,...T]
The procedure is schematicdly shownin Fig. B.1.

8.2 Maximum Likelihood Estimation of model parameters

The idea behind Maximum Likelihood Estimation is to compute the optima parameters of the
modd by iteratively modifying them to minimize alikelihood function[5], [6], [7].
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Initial estimation

X g0+ Poo

} }

M easurement Update (" Correct")

Time Update (" Predict") 1. Compute the Kalman Gain

-1
1. Project the state ahead Kig = F’M/tCtT+l [CtﬂF’tﬂ/tCtT+1
Xt+:|/t = AXt/t + But

2. Update estimate with measurement y.q
2. Project the error covariance ahead im/m = )2t+]/t +K t+l(yt+1 - C)A(M/t

P = AP, AT +GQG

3. Update the error covariance

Pt+]/t+1 = [l -K t+1C]Pt+]/t

Fig. B.1 Kaman filter operation flowchart.

After condructing the modd representation in the date space and seting up the KF
procedure, we construct a vector of unknown parameters q that contains the unknown parameters

of the modd.
?:E k s s"]T

Using the covariance of the innovation process N+.1/t, obtained by the Kaman filter,
Nt+1/t = CPt+]/tCT
we can condruct alog likelihood function J.
L8 (57N Sy + g0t (N, )]
J=logL=- Ea Yesyt Ny Yo + log\det N iyt
t=1
The procedure iteratively updates the parameter vector g according to the equation

Pl — i _ ¢ iM —1(?i )ﬂJ(?i )

1?
where M (@) isaHessan matrix of thelog likelihood function
_1°3(a)
M(a)=
fia, Tia,

The procedure is schematicaly presented in Fig. B.2.
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Initid values @°, 1 © X,

k q
Kaman Flter
- obtainJ
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i+1

Uncongtrained optimization
- obtain M, 1J9q

I

Maximum likelihood update of q

Optima parameter vector

Fg. B.2 Maximum Likeihood estimation flowchart
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