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Abstract 
 
The bid based model developed in this report is intended as a fundamental model  for 

electricity price dynamics, to be used in a wide range of applications. The emphasis was placed 
on incorporating the unique characteristics of electricity prices, including seasonality on multiple 
time scales, lack of load elasticity, stochastic supply outages, strong mean reversion, and 
stochastic growth of load and supply. Principal component analysis is applied in the model in 
order to capture intra-day dynamics, while at the same time greatly reducing the computational 
complexity.  

The model is calibrated on actual load and price data form the New England ISO. We also 
propose extensions of the model to deal with instances of multiple spot markets connected by 
transmission lines. Through simulations we illustrate how the model can be used to estimate the 
value of transmission rights in a two-market environment. It is also shown how the model can be 
used by a for-profit transmission provider in order to make optimal investment decisions in new 
transmission capacity. Finally, an extension of the model is proposed to simulate the interaction 
between technical innovation and long-term price dynamics in electricity markets. 

 



   3

Index 
 

1 PROBLEM OF INTEREST............................................................................................. 5 

1.1 QUANTITATIVE MODELING OF ELECTRICITY PRICES - [8],[21],[23],[24] ..................... 5 
1.2 PRODUCTION (COST) BASED MODELING OF ELECTRICITY PRICES ............................... 6 
1.3 ECONOMIC EQUILIBRIUM MODELS OF ELECTRICITY PRICES [26],[27],[28],[29].......... 6 
1.4 AGENT-BASED MODELING OF ELECTRICITY PRICES [15],[16]...................................... 6 
1.5 EXPERIMENTAL MODELING OF ELECTRICITY PRICES [25]............................................ 7 
1.6 FUNDAMENTAL MODELING OF ELECTRICITY PRICES [17] ............................................ 7 

2 BID-BASED STOCHASTIC MODEL FOR ELECTRICITY PRICES...................... 8 

2.1 LOAD CHARACTERISTICS ............................................................................................. 8 
2.2 SUPPLY CHARACTERISTICS .......................................................................................... 8 
2.3 PRICE AS A FUNCTION OF LOAD AND SUPPLY ............................................................... 9 
2.4 STOCHASTIC LOAD MODEL........................................................................................ 11 

2.4.1 Modeling Demand Seasonality.......................................................................... 12 
2.4.2 Modeling Load Uncertainty .............................................................................. 13 
2.4.3 Mean Reversion ................................................................................................. 14 
2.4.4 Stochastic Growth............................................................................................. 14 

2.5 STOCHASTIC SUPPLY PROCESS ................................................................................... 15 
2.5.1 Seasonality of Supply ........................................................................................ 16 
2.5.2 Modeling Supply Uncertainty............................................................................ 17 
2.5.3 Modeling Unit Outages ..................................................................................... 18 
2.5.4 Modeling Scheduled Maintenance .................................................................... 19 

2.6 SUMMARY OF THE BID-BASED STOCHASTIC PRICE MODEL........................................ 20 

3 CALIBRATION OF THE BID-BASED STOCHASTIC MODEL ............................ 21 

3.1 CALIBRATION AND OUTAGES...................................................................................... 23 
3.2 APPLICATION OF PCA TO BSM.................................................................................. 23 

3.2.1 Load side ........................................................................................................... 23 
3.2.2 Supply side......................................................................................................... 25 

3.3 ESTIMATION OF THE PARAMETERS OF THE BSM ........................................................ 28 
3.3.1 Calculation of mean reversion factor in the BSM............................................. 29 

3.4 THE TIME-SCALE SEPARATED BID-BASED STOCHASTIC MODEL ................................ 31 
3.4.1 Introduction....................................................................................................... 31 
3.4.2 Calibration of TBSM ......................................................................................... 31 

4 SIMULATIONS .............................................................................................................. 35 

4.1.1 Deterministic price and monthly parameters.................................................... 36 
4.1.2 Daily weight process properties........................................................................ 37 
4.1.3 Daily price using BSM ...................................................................................... 41 
4.1.4 Daily price using TBSM .................................................................................... 41 

5 APPLICATIONS............................................................................................................. 44 



   4

5.1 A MULTI-MARKET MODEL .......................................................................................... 44 
5.1.1 Transmission line flow ...................................................................................... 44 
5.1.2 Valuing a Transmission Right ........................................................................... 45 
5.1.3 Simulation of the Multi-Market Model.............................................................. 45 
5.1.4 Simulation Results............................................................................................. 46 

5.1.4.1 Simulation results for load ............................................................................ 46 
5.1.4.2 Simulation results for prices.......................................................................... 47 
5.1.4.3 Value of a spread option as a function of transm. line capacity.................... 47 

5.1.5 Interpretation of Simulation Results ................................................................. 49 
5.2 GENERATION ASSET VALUATION WITH UNIT COMMITMENT CONSTRAINTS ................. 49 
5.3 MODELING OF THE LONG TERM DYNAMICS OF THE ELECTRICITY PRICES .................... 50 

6 CONCLUSION................................................................................................................ 52 

7 APPENDIX A: DERIVATION OF PRINCIPAL COMPONENTS .......................... 53 

8 APPENDIX B: JOINT PARAMETER ESTIMATION USING MLE AND KF ...... 55 

8.1 DERIVATION OF KALMAN FILTER............................................................................... 55 
8.1.1 Kalman Filter .................................................................................................... 55 
8.1.2 KF Algorithm..................................................................................................... 56 

8.2 MAXIMUM LIKELIHOOD ESTIMATION OF MODEL PARAMETERS.................................. 56 

9 ACKNOWLEDGEMENTS............................................................................................ 59 

10 REFERENCES ............................................................................................................ 60 

 



   5

1  Problem of Interest 
 
The restructuring of the electric utilities industry has forced industry participants to rethink 

their approach to a number of decision processes, including investment, speculation and risk 
management decisions in electricity markets. These problems all require knowledge of the future 
behavior of prices in the market. This has led to a push in the industry as well as in academia to 
develop viable models describing the stochastic behavior of electricity prices. Since the models 
are being applied to a wide variety of questions, there is no ‘perfect’ model. The model has to be 
evaluated in context of its application. Since a company may be required to coordinate its 
decision process in asset investments, risk management and speculation, there is however a 
distinct advantage to ensuring that the models that are used in each case are at least not 
conflicting in their estimates, but represent their users' best understanding of the marketplace. 

Fig. 1: Dependence of optimal decisions on the electricity price models 

We begin by formulating the problem in terms of a generic set of future cash flows. The cash 
flows can be a result of an investment into physical assets, a contractual obligation, or an 
exchange-traded derivative. Future cash flows are a function of future market prices. Using the 
results of the price model in the cash flow function allows us to estimate the joint probability 
distribution of future cash flows, Fig. 1. This distribution, in turn, is fed into the users objective 
function, which becomes the criteria for optimal decision-making. 

Depending on the objective of the user, a number of approaches for modeling price dynamics 
are available. In this section we separate these approaches into six broad categories. The 
approaches differ in complexity, detail and objective of the models.  

 

1.1 Quantitative Modeling of Electricity Prices - [8],[21],[23],[24]  
 
Objectives: To characterize the stochastic properties of commodity prices over time, 

specifically, to attempt to derive the variance and covariance of commodities prices. With this 
information the user is then able to price a broad category of financial derivatives, as well as to 
perform basic risk management functions. 

Characteristics: The models used in quantitative modeling are usually generic in nature. The 
user attempts to find the lowest order model possible to accurately describe the stochastic 
properties of the commodity. 

Advantages: Since the model is generic, the user does not require an in depth understanding 
of the economic or physical relationships involving the production and trading of the 
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commodity. Calibration schemes are also standardized and can be duplicated across multiple 
commodities. 

Disadvantages: This category of models is calibrated using historical spot and forward 
market data, and when available, using implied volatilities from historical models. It requires the 
availability of a significant amount of price history data. In case of electricity, changes in the 
regulatory environment have made historic prices invalid for calibration purposes, leaving the 
user with an inadequate set of training data for the models. 

 

1.2 Production (Cost) Based Modeling of Electricity Prices 
 
Objectives: To model future electricity prices based on detailed models of the cost structure 

of individual products. This information is used to create a cost-based supply curve. Combined 
with estimates of future demand, this can be used to generate price estimates. 

Advantages: Marginal cost information is generally available for all producers in a region. 
The creation of a supply function is therefore a relatively straightforward exercise. Furthermore, 
the cost can be linked to underlying fuel prices by using heat rate estimates on the unit. This 
allows the user to model the interaction of fuel and electricity prices. 

Disadvantages: Cost based modeling ignores the strategic bidding practices of market 
participants. The effect of market power is likely to raise prices above cost-based levels. The 
cost-based models can therefore rarely be calibrated to correspond to actual observed prices in 
the market. 

 

1.3 Economic Equilibrium Models of Electricity Prices [26],[27],[28],[29] 
 
Characteristics: As means of incorporating strategic bidding into cost-based models, theories 

such as Cournot pricing are applied to the generation stack. At a given load level one can then 
solve for an equilibrium markup of bids above cost based levels. This markup will generally 
increase as a function of market concentration. 

Advantages: By applying game theory type models it is possible to explain why prices rise 
above cost-based levels. This approach is useful in predicting expected price levels in markets 
with no price history, but known supply costs and market concentration. 

Disadvantages: These models produce equilibrium price levels. However, electricity markets 
are constantly evolving, driven by stochastic demand and supply, and therefore never settle to 
equilibrium levels. In applications such as risk management, understanding the dynamic 
behavior of prices is crucial. In this case economic equilibrium models offer little insight. 

 

1.4 Agent-based Modeling of Electricity Prices [15],[16] 
 
Characteristics: Agent-based models attempt to capture the strategic behavior of investors 

(agents) on the marketplace. To approximate the dynamics of the market, participants are 
separated into groups, each with their own objective function. Based on the objective function 
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and observation of current price levels, a decision rule is defined for each group. These rules can 
be highly nonlinear in nature. Finally the system is simulated under various inputs. 

Advantages: In contrast to cost-based and equilibrium models, agent-based models address 
the effect of market power both on the overall price markup, and the inter-temporal dynamics of 
price. The variety of dynamic behavior, which can be captured with a relatively small number of 
strategies, is impressive. The approach, for example, allows the user to study the impact of 
factors, such as collusion, on the overall system price. 

Disadvantages: While agent based modeling is useful for studying the qualitative behavior of 
markets, it is much more challenging to get relevant quantitative results. To do so, one would 
need a consistent method of calibrating the parameters of the decision processes based on 
historical data. This seems like an overwhelmingly difficult task. 

 

1.5 Experimental Modeling of Electricity Prices [25] 
 
Characteristics: In the experimental modeling approach, a group of people are gathered and 

assigned assets and obligations in the market place. They then simulate the behavior of the 
market by submitting bids, which are used to clear the market.  

Advantages: The organizer of the experiment has full control over the parameters and can 
change factors such as market concentration or number of participants in order to observe the 
effects on the spot price. 

Disadvantages: Experimental modeling is extremely difficult to map into a real marketplace. 
To get reliable results, one would need to convince actual marketers to participate in the process, 
and even then it is questionable if they would betray their actual trading strategies. 

 

1.6 Fundamental Modeling of Electricity Prices [17] 
 
Objectives: Determining the stochastic properties of commodities prices. 
Characteristics: In the fundamental modeling approach, price dynamics are described by 

modeling the impact of important physical and economic factors on the commodity price. The 
model seeks to capture basic physical and economic relationships present in the production and 
trading of the commodity. By explicitly adding these constraints, one can increase the 
complexity of the model while decreasing the requirements on the available training data. 

Advantages: By relaying the dynamics of the commodity price to the fundamental drivers, 
we gain a new set of training data. If the fundamental inputs are directly observable, we can use 
historical inputs in order to calibrate the model parameters. In the case of electricity this can be a 
crucial difference. Currently there is only 1-2 years of relevant electricity price history available 
(depending on location). However, if we choose temperature (a major determinant of electricity 
demand) as a fundamental driver, we have decades worth of historical measurements available.  

Disadvantages: In creating the fundamental model we make specific assumptions about 
economic relationships in the marketplace. The price projections generated by the models are 
therefore very sensitive to violations of these assumptions. Thus there exists a significant 
modeling risk in the application of the fundamental approach. 
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2  Bid-based Stochastic Model for Electricity Prices 
 
In this section we develop a Bid-based Stochastic Model (BSM) of the evolution of prices on 

electricity spot markets. We assume that the spot market operates as a double auction, similar to 
the rules of the California Power Exchange. The model can be modified to account for variations 
in the auction procedure. 

We design the model to be applicable to hedging, speculation or investment decisions in 
electricity markets. As such, it focuses on quantifying the uncertainty of future price movements. 
We have used fundamental modeling approach, where the fundamental drivers are load and 
supply shifts. The model captures the most critical characteristics of demand (load) and supply as 
outlined below in electricity market. 

 

2.1 Load Characteristics 
1. Load Elasticity: We assume electricity demand to be completely inelastic (i.e. 

independent of market clearing price). This may appear to be a strong assumption, but in 
the current state of deregulation, few end users actually observe real time price 
movements.  

2. Seasonality: Seasonality is a major driver for electricity demand. We observe seasonality 
over the daily, weekly, and yearly cycles.  

3. Mean reversion: One can observe temporary spikes in electricity demand, often induced 
by extreme weather conditions. However, these spikes are not sustainable and demand 
reverts back to normal levels within a few days. 

4. Stochastic growth: Growth in electricity demand is driven in part by trends in the overall 
economy. The growth is therefore hard to predict over longer time horizons, and must be 
considered stochastic. 

 

2.2 Supply Characteristics 
1. Supply Elasticity: In contrast to load, electricity producers are price responsive. The 

supply characteristic is mainly a function of generation technology, as operating cost can 
vary significantly with the type of generator used. Market power and strategic bidding 
also have an impact on the shape of the supply bid function. 

2. Stochastic Availability of Generation: Due to unexpected equipment failure or because 
of planned maintenance, generators are taken offline from time to time. The effect of 
such sudden jumps in the availability of supply on the market-clearing price can be 
significant.  

3. Uncertain fuel cost: Changes in the price of fuels such as oil and gas will affect the way 
generators bid into the market. 

4. Unit Commitment: Nonlinear characteristics in the generator cost functions, such as 
startup costs and minimum run times, result in intra-day supply bid curve shifts.  

5. Import/Export: Producers and consumers bidding into the market from outside its 
geographic limits can cause significant price shifts.  
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6. Inter-Market: Prices on related markets such as markets for capacity and ancillary 
services, represent opportunity costs for power suppliers. Hence there is a strong 
interaction between prices on these markets and price in the energy market. 

 

2.3 Price as a function of Load and Supply 
In our model we characterize spot price as a function of two variables; L representing load 

shifts, and b representing supply shifts. These variables can be interpreted as follows. 
Load: We assume load bids are inelastic. Therefore Lk is selected to represent the market 

clearing volume of the exchange for hour k. 
Supply: In contrast to load, supply bids have significant price elasticity. The elasticity (or the 

inverse of the slope of the supply curve) varies significantly with the clearing quantity. In 
general, supply will be highly elastic at low demand levels, and gradually become more inelastic 
as demand increases.  

Fig. 2: Ascending-ordered marginal costs of generators for California 

We can explain this characteristic of electricity supply in two ways. First we examine the cost 
structure of the underlying generators. Fig. 2 shows the ‘stack’ for California, created by 
ordering the generators from lowest to highest marginal cost. As seen in the figure the cost 
function is relatively flat for low demand levels, when the load is served mainly by hydro and 
nuclear plants. In the medium range we see a slight cost increase as efficient fossil plants are 
utilized. In the high demand range, inefficient peaking plants are dispatched, and the operating 
cost escalates significantly.  

Another approach is to view the supply bids from a game-theoretic perspective. At low 
demand levels there is a high ratio of available generation capacity to electricity demand. Hence 
the market will be competitive and highly price responsive. As load approaches the total installed 
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capacity of the market, the few non-committed generators have a high degree of market power, 
and can withhold their capacity to push prices upward. In-depth analysis of market power and 
strategic bidding in power markets can be found in [15] and [16].  

Fig. 3 shows a plot of the supply curves submitted to the California Power Exchange during a 
24-hour period.  

Fig. 3: Daily development of the supply curves and MCP 

When comparing the cumulative bid curves submitted at different hours we find that the basic 
shape of the bid curve is preserved over time. This allows us to reduce the complexity of the 
supply model. We fix the shape of the bid curve and model its temporal shifts as a stochastic 
process. Specifically we chose an exponential function to approximate the shape. Price in hour k 
can then be written as, 

kk baq
k eP +=  

where a is a fixed parameter characterizing the slope of the bid curve, qk is the market 
clearing quantity in hour k, and bk denotes the position (or shift) of the curve. Next we add the 
constraint that demand bids are inelastic. The market clearing quantity qk must then always be 
equal to the system load Lk. We can now write market clearing price in terms of our two 
fundamental drivers, load and supply: 

kk baL
k eP +=  

This approach reduces the complexity of the problem by constraining the number of free 
variables on the supply side. The downside of this assumption is that we risk misrepresenting the 
shape of the supply curve in certain regions. There are three major parts of the supply curve, 
lower, middle, and upper. The result of fitting each of them with an exponential is shown in Fig. 
4. Since we are concerned with the price range, corresponding to the actual (market clearing) 
load at that hour, we have selected the second exponential (denoted as exp2), which best 
approximates the middle part of the bid curve.  
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Fig. 4: Exponential fitting of the aggregate hourly supply curve 

 The next step is to postulate stochastic models for the evolution of the fundamental drivers. 
In order to keep track of the variables and parameters evolving at different time scales we use the 
following notation: 

 
Subscript Meaning Superscript Meaning 

d evolves at daily rate L Belongs to load process 
m evolves at monthly rate b Belongs to supply shift process 

none constants δL Applies to load mean process δL 
  δb Applies to supply mean process δb 

 
The following section will outline the models used and the reason for choosing that specific 

form. In later sections we present step-by-step descriptions on how model parameters were 
calibrated based on historical market data. 

 

2.4 Stochastic Load Model 
 
We listed the four characteristics of electricity demand which we wanted to capture in our 

model; lack of price elasticity, seasonality, mean reversion, and stochastic growth. The elasticity 
assumption is already implicit in our formula for market clearing price Pk. The challenge is to 
incorporate the remaining criteria without making the model too complex for calibration and 
simulation purposes. 
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2.4.1 Modeling Demand Seasonality 

The three types of seasonality in electricity demand are daily, weekly and yearly patterns. Fig. 
5 shows demand in New England for a sample week in May, starting with Monday. 

 

Fig. 5: Load diagram for a week in May, New England 

We see that there is a regularly recurring pattern within the weekdays (daily seasonality) and 
that the weekend consumption pattern is significantly different (weekly seasonality). From here 
on we will simplify our task by eliminating the weekends and modeling only the weekday loads. 
This allows us to ignore the weekly seasonality. This simplification is taken directly from the 
forward markets, which trade weekdays and weekends as separate contracts. 

Addressing the daily seasonality is more challenging. We have chosen to denote the daily 
load as a [24×1] vector Ld, where each component represents an hourly load. This vector is 
defined as the sum of a deterministic and a stochastic component. 

L
d

L
md rµL +=  

The deterministic component µm
L is a [24×12] vector that represents the typical or average 

monthly load pattern for the day. This component evolves on a monthly time scale, since the 
typical load pattern for January is significantly different form the typical pattern for August. Fig. 
6 shows a plot of average 24-hour load patterns for each month in New England. 
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Fig. 6: Average monthly patterns of daily load, µm
L, New England 

 

2.4.2 Modeling Load Uncertainty 

The stochastic component r of the daily load pattern is needed to explain any deviation in 
actual observed load from the pattern given by µm. In order to achieve this, the vector r would 
have to contain 24 random variables. However in observing actual load patterns, one finds that 
there is a strong correlation between deviations in consecutive hours.  

Intuitively, one could argue that if unusually hot weather causes demand to increase in hour 
14, it is very likely to also cause higher demand in hours 15 and 16. To capture this 
mathematically, we applied principal component analysis (PCA) to the data, [10], [11] and [12].  

Principal Component Analysis (PCA) is a method that enables us to describe a set of 
observations of n variables, which would normally require n dimensional representation, with a 
reduced set of j variables, j ≤ n. In other words, PCA addresses the issue of how to characterize a 
probabilistic space of n dimensions using a reduced set of j basis functions.  

Although some information will be lost in this process, PCA enables us to minimize this 
information loss by choosing the new basis as the best approximation by minimizing the 
variance of the error. In the original data set, groups of variables often move in the same 
direction, indicating that more than one variable is describing the same driver. Therefore, a group 
of variables can be replaced with a single new variable. At the same time, we retain the 
maximum information (variance) of original observations. 

PCA generates a set of new variables, called Principal Components (PC). Each principal 
component is a linear combination of the original variables (the old basis). All PCs are 
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orthogonal to each other, forming a new orthogonal basis, so there is no redundant information. 
A rough explanation of the theory supporting principal components and their derivation is 
provided in Appendix A. 

The output of the PCA algorithm is a set of principal components vLi and associated weights 
wi so that the best approximation of the load vector Ld in the new basis is given by: 

∑
=

+=
j

i

Li
m

Li
d

L
md w

1

vµL . 

In this report we will use a single principal component, a monthly [24×1] vector vL
m to 

describe load behavior, reducing the load equation to: 
L
m

L
d

L
md w vµL += , 

where µm and vm are deterministic parameters and wd is a daily stochastic process. 
The choice of the number of principal components used is a tradeoff between accuracy and 

complexity. For short-term decision, making such as day-ahead bidding, a single PC may not 
provide a rich enough sample space. However, when applying the price process to hedging and 
valuation decisions over months or years, a small basis prevents the problem from blowing up in 
computational complexity. 

Next we need to address how the stochastic component wd evolves over time. The model we 
propose is a two factor mean reverting model: 

L
d

L
m

L
d

LL
d

L
d zeee σα +−=−+1  

δδσκδδ L
d

LLL
d

L
d z+=−+1 , 

where, 
L
d

L
d

L
d we δ−= . 

2.4.3 Mean Reversion 

We can interpret the states ed
L and δd

L in terms of the temporal characteristics of load. The 
state edL models short term deviations in load, such as those caused by sudden heat waves. These 
events are generally temporary, and load gradually reverts back to normal levels. The process for 
ed

L is therefore chosen to be mean reverting. The parameter α determines the speed of reversion. 
Fig. 7 illustrates how the short-term spikes in load quickly revert to the long-term mean. For 
clarity, here the mean is being modeled as a monthly rather than a daily process. This time scale 
separation between the states is a method, which further simplifies the application of the model, 
and its advantages and disadvantages are described in the calibration section. 

2.4.4 Stochastic Growth 

As eL reverts to zero, the weight wL reverts to δL, or the “normal” load level. However since 
the power system is never at equilibrium, the normal load level is in itself a stochastic process. 
The δL process characterizes the stochastic growth of load over time. This growth could be 
positive or negative for any given period of time, and there can be significant uncertainty to the 
rate of growth, captured in the long-term volatility parameter σLδ. The long-term growth of load 
in New England is illustrated in Fig. 8. 

The effects of the structure of the stochastic process on the mean and variance of future load 
is explored in detail in the section on simulation.  
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Fig. 7: Reversion of the load weights wd
L to long-term mean δm

L, year 1998 

 

Fig. 8: Load weights wd
L, and long-term mean δm

L, New England 

 

2.5 Stochastic Supply Process 
 
Recall our underlying price model as a function of load and supply states Lk and bk, 
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kk baL
k eP += . 

This implies that the aggregate supply bid curve is an exponential function of fixed shape 
(given by a), which shifts over time. 

Let us consider the input drivers, which could cause the supply curve to shift: 
1. Fuel price: An increase in fuel prices would force suppliers to increase their bids into the 

spot market in order to remain profitable. An increase in the fuel price would therefore be 
accompanied by a positive shift in bk. 

2. Unit Outages and Scheduled Maintenance: The withdrawal of a generation unit from the 
market, whether through an unexpected failure or a scheduled maintenance, causes a significant 
shifts in the supply bid function. The size and duration of these shifts, as well as the frequency of 
their occurrence, is technology dependent. 

3. Gaming and Strategic Bidding: It has been shown that generators with significant market 
share may increase their profits by unexpectedly removing part of their generation assets from 
the market, forcing up price and increasing the payoff for the remaining units [20]. Such an event 
can be characterized by a positive shift in bk. 

4. Unit Commitment Decisions : While generators are often modeled as having well behaved 
quadratic cost functions, in reality there are significant non-standard costs and constraints 
associated with starting up and shutting down a generator. Translating such constraints into bids 
will cause generators, even though they may have no market power, to deviate from a marginal 
cost-bidding scheme. 

We now attempt to translate the impact of these drivers into a stochastic process for the 
supply process. As with the load we characterize supply by a [24×1] daily vector bd containing 
hourly supply levels. This daily vector is then decomposed into its deterministic and random 
components: 

b
d

b
md rµb +=  

 

2.5.1 Seasonality of Supply 

Although less pronounced than the load, the supply process does exhibit seasonality over 
multiple time scales. The most pronounced are monthly and intra-day seasonality. 
1. On a monthly time scale, we see the scheduling of maintenance. In a practice that has carried 

over from the regulated industry, units are regularly scheduled for maintenance during the 
off-peak seasons (mainly fall and spring), when demand spikes are unlikely. From the 
modeling perspective this creates a repeating twelve-month pattern of supply bid shifts.  

The fuel markets feeding the generators also experience seasonality on this time scale, 
mainly due to seasonal demand on oil and gas. Seasonal fuel prices therefore create a second 
pattern of supply shifts. The aggregate effect of these repeating yearly patterns is captured by 
the deterministic shifts in the monthly parameter µm. 

2. The second type of seasonality experienced in the supply process is intra-day, where we 
observe repeating 24-hour patterns of supply curve shifts. This type of seasonality is mainly 
contributed to unit commitment decisions done by the suppliers. The operator of the unit will 
estimate a day ahead of time the hours during which it will be profitable to run the unit, 
based on the startup/shutdown constraint of the generator. Once this decision is made he may 
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choose not to submit bids into the remaining hours, so as to not risk being scheduled and 
incurring a substantial startup cost. The result is a repeated pattern of shifts illustrated in Fig. 
3. This behavior is captured by the daily shape of the vector µm

b. 
 

2.5.2 Modeling Supply Uncertainty 

In modeling the random component of the daily supply vector we again apply principal 
component analysis, using a first order approximation (one PCA vector), 

b
m

b
d

b
md w vµb += . 

The shape of the principal component, Fig. 17 and  Fig. 18, is strongly related to the unit 
commitment decision of the generators. 

The process defining the evolution of the weights is similar to that used for the load process: 
b
d

b
m

b
d

bb
d

b
d zeee σα +−=−+1  

δδσκδδ b
d

bbb
d

b
d z+=−+1 , 

where, 
b
d

b
d

b
d we δ−= . 

The mean reverting component ed
b reflects the transient characteristics of the supply process. 

This includes short-term fuel price spikes and short-term gaming. These effects are temporary 
and die out at a rate governed by α. The reversion of supply to its long-term mean is illustrated 
in Fig. 9: 

 

Fig. 9: Reversion of supply weights wd
b to long-term mean δm

b 

The non-reverting component δd
b models the long-term availability of generation. This will 

include any new installed or retired capacity on the market. 
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2.5.3 Modeling Unit Outages 

So far our supply model has included smooth changes in the behavior of the supply bid curve, 
which can be characterized by an Ito process [9]. However, there exist a set of high impact, low 
probability events that cannot be approximated trough random walk type models. One such event 
is the unexpected failure of a major generator in the market. There are a number of unknowns 
associated with this event: 

1. The probability of an outage in a given day. 
2. The impact of the outage on market price. 
3. The duration of the outage. 

The answers to all three of these questions generally depend on the type of generation 
technology.  

In our model we address these problems by adding a new factor to the supply process: 

∑++=
i

i
m

i
d

b
m

b
d

b
md w ?vµb π . 

1. The probability of an outage occurring in a given day is modeled as a random incidence 
process, specifically a Bernoulli process. The probability of the outage occurring in a 
given day is independent of all other time intervals. This is denoted by the variable π i, 
where π i = 0 under normal conditions, and π i = 1 when there is an outage in a plant of 
technology i. 

 

Fig. 10: Daily shape ψ for a 400 MW base load plant and a 200 MW peaking plant 

2. The impact of the outage on market clearing price will depend on the capacity of the unit, 
and its characteristic operating schedule. An outage in a plant, which is scheduled to 
deliver at full capacity, results in a positive shift in bd, equal to the capacity of the plant. 
If however the plant was not scheduled to deliver (ie. bid in above market clearing price) 
then there is no effect on the price. The probability of a plant being selected to produce in 
a given hour generally depends on its cost structure, and therefore on its technology. We 
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incorporate this effect by assigning a [24×1] vector ψ m
i to each technology i. The vector 

denotes the capacity of the unit as well as the likelihood of the unit being scheduled in a 
given hour. Fig. 10 denotes the daily shape of ψ for two types generation technologies, a 
400 MW base load plant, and a 200 MW peaking plant. 

3. The outage duration is modeled as a deterministic minimum outage time plus a stochastic 
Bernoulli component. By combining this process with the random arrival time of the 
outage (described in (1)), we can characterize the process for the state π i

d as a Markov 
chain, as illustrated in Fig. 11. Here the numbers next to the arrows designate the 
probability of a state transition for a given day. The probability of going from normal 
operation to an outage for each day is given by λout. The probability of the unit returning 
on-line after the minimum outage period is given by λin. For the case shown the 
minimum outage time is four days. 

 

Fig. 11: Modeling of outage duration for the state π i
d as a Markov chain 

 

2.5.4 Modeling Scheduled Maintenance 

Scheduled maintenance can be modeled in the same manner as unit outages. The only 
difference is that the πd becomes a deterministic rather than a stochastic state variable. 
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2.6 Summary of the Bid-based Stochastic Price Model 
 
The following is a compact summary of the mathematical model underlying the Bid-based 

Stochastic Model. 

Spot Price Model: 
Hourly price: hh baL

h eP +=  

Daily 24-hour vector of prices: dda
d e bLP +=  

Load Model: 
L
m

L
d

L
md w vµL += , 

L
d

L
m

L
d

LL
d

L
d zeee σα +−=−+1  

δδσκδδ L
d

LLL
d

L
d z+=−+1 , 

where, 
L
d

L
d

L
d we δ−= . 

Supply Model: 
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d z+=−+1 , 

where, 
b
d

b
d

b
d we δ−= . 

and πd is Markov process with parameters λout and λin as described in the previous section. 
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3 Calibration of the Bid-based Stochastic Model 
 
Calibration of the Bid-based Stochastic Model (BSM) consisted of several steps. It used 

historical data on aggregate hourly market clearing load in the system and on market clearing 
price, as determined at the New England power system electricity market for the particular hour. 
The load history encompassed 18 years of hourly load data (1980-1998), whereas supply data 
(hourly market clearing price) were only available for the 14-month period between May 1998-
June 2000. Both fundamental processes were independently calibrated using respective data. 

Calibration of BSM is a two-part process, as shown in the flowchart on Fig. 12. In the first 
part, data is gathered from the sources, filtered and reformatted. This is mainly done by hand 
using spreadsheet program, or simple filtering programs designed in Matlab. Particular steps 
differ between load and supply process models, as the models play different roles in the BSM.  

 

Fig. 12: Flowchart of the UVM calibration  

The second part consisted of model calibration to data, prepared in the first part. It was to a 
great extent uniform in both models, although they were calibrated independently and separately. 
In this step, seasonality in load and supply models was taken into account, and the parameters of 
the both models were calculated using Principal Component Analysis and Linear Regression. 
The general flowchart is presented in Fig. 13. 

 

Data Formatting 
• Filter out weekends 
• Determine supply curve shape 
 

Read data 

Load/Supply Model Calibration 
• Extract seasonality 
• Principal Component Analysis 
• Linear Regression 

Write calibrated parameters 
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Fig. 13: Flowchart of the BSM calibration  

For month = 1 to 12 compute: 
 
 

Data initialization: 
Filter out weekends 

 

Read data 

Monthly load average for each hour:  
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Principal Component Analysis 
Compute: 
• First Principal Components νm 
• Load weights wd 

Compute series of long-term weight averages: 
 

 BSM  TBSM 

 δδσκδδ ddd z+=−+1  ∑
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d
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1
d   

  

Linear Regression Analysis 
Compute: 
• Mean reversion rate α 
• Monthly volatility of the weights σm 
• Long term drift parameter κ 
• Volatility of the weights' means σm

δ  

Write calibrated parameters 
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3.1 Calibration and outages 
 
The model of supply process in its original form facilitates description of outages. Although 

more flexible, it would make calibration harder since it would require actual data on generator 
outages along with price data. Another possibility would be to assume information on outages 
from the jumps present in supply bidcurves. Information on outages could then be inferred by 
measuring the skewness of probability density function from lognormal distribution of the bids. 

For the purpose of calibration, the supply process bd was in our case modeled in a simpler 
form without outages. It was therefore possible to postulate the evolution of the daily error for 
both fundamental processes, Ld and bd in the following fashion: 

dddd zeee σα +−=−+1  

By substituting the wd and δd parameters into the equation, we can get evolution of the daily 
weights: 

( ) ddddddddd zwwwee σδαδδ +−=+−−=− +++ 111  

The daily weights therefore emerge as a result of the mean reversion to the daily mean, long 
term drift of the mean κ, and the two independent stochastic processes with their respective 
volatilities σ and σδ.  

( ) dddddd zzwww σσκδα δδ +++−=−+1  

( ) δδσσκαδα ddddd zzww ++++−=+ 11  

 

3.2 Application of PCA to BSM 

3.2.1 Load side 

We wanted to calibrate the Bid-based Stochastic Model using the New England load data, of 
which we had 18 years to our disposal. With a help of a Matlab-based computer program, we 
have calculated the matrices v and µ. Using the PC Analysis, our goal was to reduce the order of 
v from [12 × n × 24] to [12 × j × 24], where n=24 and  j = 1. Load was modeled as 
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?µL  (1) 

The monthly average daily shape of load, µm
L for 24 hours and 12 months for New England is 

shown in Fig. 6 and the principal components in Fig. 14. Time series of daily load weights wd
L 

reverting to the long-term mean δ m
L for New England for the years 1980-98 can be examined in 

Fig. 15.  
As expected, the load data of a particular hour in single month were highly correlated, so by 

using only the first PC we were able to account for over 90% of the variance. The variance (in 
%) explained per month by the first PC is shown in Tab. 1. 

Tab. 1: Variance of load explained by the first PC for different months 

Month 1 2 3 4 5 6 7 8 9 10 11 12 Avg. 

Var (%) 92.78 95.12 94.60 93.37 94.13 96.33 96.75 96.46 93.91 94.27 93.06 93.36 94.51 
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Fig. 14. Principal Components of load vm
L for New England 

 

Fig. 15: Load weights of the 1. PC, wd
L, and monthly average δm

L, New England 
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Fig. 16. Average monthly pattern of supply shift µm
b, New England  

 

3.2.2 Supply side  

At the supply side model, we wanted to model the evolution of the bidcurve shift factor b that 
appears in the price model equation.  

 dda
d e bLP +=  (2) 

Similarly to our derivations for load, we wanted to apply PC decomposition to obtain the 
following expression for b  

 121,1,
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KK ==+= ∑
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d

b
md ?µb  (3) 

The monthly average shape of hourly shift of price curve, µm
b for 24 hours and 12 months for 

New England is shown in Fig. 16. Time series of daily supply curve shift bd and µm
b for New 

England for the years 1998-2000 can be examined in Fig. 15. The full set of principal 
components is shown in Fig. 17, and the interplay between the first two PC-s in Fig. 18. 
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Fig. 17: Principal Components of supply shift vm
b, New England 

To calibrate the supply side of the BSM using the New England supply data, the problem was 
that we only had 14 months of hourly b available. To use a full-size PC Analysis, the number of 
instances in data (in our case workdays in a month) should be at least equal the number of 
original variables, in our case the number of hours analyzed. Since on average there are only 
about 22 workdays in a month, we would require at least two instances of each month, raising 
the required number of months to 24.  

To extend the available amount of data, three approaches were investigated. 
1. Duplicating the missing months to obtain 24 months worth of data. Since data are result of 

two distinct stochastic processes, this would significantly alter data beyond usability, 
introducing a deterministic pattern.  

2. Treating the entire year as composed of 12 equal months, thus introducing a single set of j 
principal components. As the PC analysis is used to model deviation from the monthly daily 
load pattern µm, this approach would have adverse effects on the amount of information 
retained by the model. The investigated timescales for load pattern µ and principal 
component matrix v is outlined in Tab. 2. 

 

Tab. 2: Effects of different modeling timescale  

 µ v Result 
1 yearly yearly 
2 monthly yearly 

Some of the effects 
cancel each other out 

3 monthly monthly OK 

0
5

10
15

20
25

0

5

10

15
-1

-0.5

0

0.5

1

Hour

Principal Components (24) of Deviations from Daily Supply Shape, Nu
b

Month

S
iz

e 
of

 s
up

pl
y 

cu
rv

e 
sh

ift
 -

 b



   27

 
 

 Fig. 18: First two PCs of deviation from µm
b for 24 hours for December 

3. Treating every month separately, but using reduced number of variables to calculate PCs. 
In our case, only 12 odd hours were used as original variables, reducing the order of PC 
matrix ν  to [12 × j × 12]. For the reduced order of the problem, data on single month (at 
least 20 days) were sufficient. After the matrix v was calculated and the number of 
retained PCs determined, vm for the missing 12 even hours were interpolated. The 
interpolation of values of PCs is acceptable since price shifts between hours always occur 
continuously, i.e. there are no stochastic jumps between hours. Tab. 3 presents the amount 
of variance explained by the first five PCs. 
 

Tab. 3 Variance of supply (in %) explained by the first four PCs for different months 

Month 

PC 

1 2 3 4 5 6 7 8 9 10 11 12 Avg 

1 50.12 36.08 64.98 63.50 49.18 45.68 64.29 51.57 52.10 86.92 59.47 53.99 52.22 

2 19.58 19.90 21.37 11.96 42.25 28.22 14.71 24.98 13.21 8.00 12.13 23.16 18.57 
3 12.30 18.66 4.30 9.32 4.09 11.44 9.17 13.41 11.75 1.74 10.65 9.56 9.18 
4 6.99 8.72 3.31 8.34 1.32 4.74 5.64 3.41 7.21 1.31 5.04 4.07 4.93 
 
Here, the choice of only one PC is less obvious than in the load data. An average amount of 

variance explained by each of 12 original variables is 8.33 %, so according to guidelines 
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(Appendix A) we should have in some months considered using two or even three PCs. 
However, we have decided to use one PC since on average, the variance explained by it was 
52.22%. Considering many assumptions we had made with regards to modeling of supply 
function, the error made by omitting other PC was not crucial and was therefore acceptable.  
 

3.3 Estimation of the parameters of the BSM 
 
The Bid-based Stochastic Model can be expressed in the state space as: 

ξRDuCx
Q?BuAxx

++=
++=+

ttt

tttt

y
1  

It can be shown that the model is controllable and observable. The parameters of the BSM 
could be jointly estimated using standard estimation techniques, such as either Extended Kalman 
Filter or the Maximum Likelihood Estimation method in conjunction with Iterative Kalman 
Filter, as outlined in the Appendix B. 

The problem of joint estimation of system and noise parameters has been solved in the 
literature for simpler problems [5], [6], [7], [8]. However, there are significant differences 
between our problem and others. Some of the approaches were using a simpler two-factor model 
or assumed risk-neutrality, which does not hold true in electricity markets. Others were 
describing price directly without relying on underlying fundamental processes of load and 
supply, so they could use additional data on forward prices. Since in our case forward markets on 
load or supply shift do not exist, we could not use this kind of additional information.  

The standard estimation techniques usually assume known covariance matrices of the 
stochastic processes in the model, i.e. process noise covariance matrix Q and measurement noise 
covariance matrix R. Alternatively, other techniques for estimation of noise covariances require 
complete knowledge of other system parameters. Since among the unknown BSM parameters 
there were also the stochastic process variances σ and σδ, the elements of the matrices Q and R, 
the standard estimation techniques failed to converge.  

The parameters had to be estimated separately in several consecutive steps, in which the 
parameters were estimated independently. Since the load and the supply processes are described 
in a similar way in the model, their parameters αL, κL, σL, σLδ and αb, κ b, σb, σ bδ can be 
estimated separately and in the same way. 

Estimation of the Bid-based Stochastic Model parameters can therefore be summarized in 
three successive phases.  

1. Long-term drift of the mean κ is estimated using linear least squares fit. After κ is 
determined, data is de-trended, i.e. the long-term drift is eliminated.  

2. Calculation of mean reversion factor: Factor α, determining the mean reversion speed 
of the weight process can be estimated using linear regression over de-trended data. 

3. Estimation of process volatilities: Using the estimated α, the remaining parameters of 
the model in state space form σ and σδ can be estimated using the adaptive Kalman Filter 
and the technique for identification of the variance-covariance matrices of the process 
and measurement noise Q and R, [3].  



   29

3.3.1 Calculation of mean reversion factor in the BSM 

The evolution of weights can be calculated in the following way: 
( ) δδσκσδαα 00001 1 zzww ++++−=  

After assuming the initial values of (δ0 = 0) and the linear trend already eliminated from the 
data in the previous step (κ = 0), the following sequence of equations unfolds. 
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The last equation could be rewritten as 
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Since the part of the equation, denoted as Ak, is influenced solely by zero-mean processes z 
and zδ, it is a zero-mean process. 

( )1,0NAk ≈  

It is then possible to estimate α using Linear Regression over the time series vectors of 
weights wd. The vector wd+1 is shifted in time for a day ahead compared to wd. The operator ◊ 
denotes least-squares fit of the two vectors [13]. 

( )dda ww ◊−= +11  

Although Ak is a zero-mean process, its variance is a cumulative sum of the variances of the 
underlying stochastic processes. The variance therefore grows rapidly with the number of 
samples considered in the regression procedure. Using the full set of samples (some 4500) 
rendered very unreliable estimates of α.  It turned out that a more reliable estimate could be 
obtained using between 1500 and 50 samples. 

The development of estimates of αL for the load process is shown in Fig. 19 and for supply 
process, αb, in Fig. 20. As the number of samples used in estimation decreases, the value of α 
converges to its actual value. The two curves show evolution of the estimate when using data 
from the beginning or from the end of the series. 

A summary of the estimated parameters of the Bid-based Stochastic Model for both load and 
supply processes are shown in Tab. 4.  

Tab. 4: Estimated parameters of the BSM 

 Load process Supply process 
α 0.3 0.75 
κ 4 -1.7e-3 
a 1.13484e-4 
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Fig. 19: Estimation of αL as a function of number of samples considered 

 

Fig. 20: Estimation of αb as a function of number of samples considered 
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3.4 The Time-scale Separated Bid-based Stochastic Model 

3.4.1 Introduction 

The Time-scale Separated Bid-based Stochastic Model (TBSM) evolves from the daily Bid-
based Stochastic Model as we introduce the assumption of time-scale separation between the 
fast, short-term and slow, long-term processes. The assumption significantly reduces complexity 
of the model and therefore the computational burden necessary in potential model applications. 

The TBSM postulates time scale separated development of the daily weights in load and 
supply curve shifts. In this model, the daily weights wd revert to the monthly mean δm, yet both 
states of the model evolve on a different time scales. We define a daily error of the weight ed as 
the difference between daily principal component weights wd and their long-term mean δm. 

mdd we δ−=  

where 

δδσκδδ
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+

1

1
 

Typically, m >> d, with m denoting monthly and d denoting daily values. As the properties of 
both models differ substantially, the values of their parameters differ significantly as well, Tab. 
4. 

The assumption on time-scale separation was introduced to facilitate simpler calibration of the 
model. As a trade-off, several issues with the Time-scale Separated Bid-based Stochastic Model 
arise. 

1. Time scale separation is not genuine: the time constant of the monthly process Tm is not 
sufficiently larger than the one of the daily process Td to warrant the separation 
assumption.  

2. The weight process does not fully revert to the mean within one month, so it is 
misleading to compute the long-term mean as an average of the weights over a month. 
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Because of this, the long-term mean in the TBSM is larger than the actual mean, δTBSM > 
δBSM. Since the weights in the TBSM revert to a larger mean, the speed of mean reversion 
αTBSM > αBSM is necessarily greater than the actual one. 

3. The jumps in the δTBSM are critical and unacceptable for Unit Commitment under 
physical constraints.  

 

3.4.2 Calibration of TBSM 

Although load and supply processes describe different physical phenomena, the BSM 
postulates a similar structure for both of them. Calibration of both processes, although performed 
separately, therefore follows the same pattern. 

From the time series of daily principal component weights wd, the parameters of the model, 
which govern mean reversion of the wd, α, and long-term drift of the mean δm, κ, needed to be 
determined. The following steps describe the procedure. 
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1. We construct a [D×1] time series vector of principal components weights wd, w.  

[ ] Ddwd ..1, ==w  

2. For every year and for every month within the current year, a mean of wd, δm, was 
calculated. D is the total number of days in the data, while Dm is their number in the 
current month. 
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The [12×1] vector of monthly means δ * could then be defined as  

[ ] 12..1,* == mmδd  

We could also define a [D×1] vector δ , defined as a daily time series of δm. 

[ ] 12..1,..1, === mDd mmdδd  

3. The mean reversion of the daily weights wd to the pertaining monthly mean δm is 
described as  

 ( ) dmdmdd zwww σδα +−=−+1  (5) 

where the change in weights is determined by the mean reversion part and the stochastic 
component, σmzd. The stochastic process zd is normally distributed with a zero mean and 
standard deviation of one. 

 ( )1,0Nzd ≈  (6) 

The mean of the stochastic process is zero and is not affected by the process volatility 
measure, σm. Coefficient α could therefore be determined using linear regression as the 
slope b of the "best fitting" regression line to satisfy the least-squares criterion [13].  
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The regression is performed over the time series vectors of weights w and monthly means 
δ . A shift of the vector wd for a day ahead is denoted as wd+1.  
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4. Using α, a vector of estimated weights w'd+1 was obtained: 

 dmd wdw )1(1 αα −+=′ +  (8) 

5. The difference between the estimated w'd+1 and wd+1 was the contribution of the 
stochastic component of the process, σmzd. It was therefore possible to calculate the 
monthly volatility measure σm of the process by subtracting the estimated values of w'd+1 
from the actual values wd+1 and calculating standard deviation of the parts of the time 
series vectors, belonging to a particular month: 
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6. The parameters of the weight mean process δm have been determined using linear 
regression. The drift parameter κ has been calculated as a mean difference of time shifted 
time series of the monthly means δ . 
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7. With the help of κ, a [D×1] vector of estimated weight means δ 'd+1 was calculated: 

 dd dd +=+ κ1'  (10) 

8. Similar to monthly volatility in w, the volatility measure σδ of the mean process was 
calculated by subtracting the estimated values of δ 'd+1 from the actual values δ d+1 and 
computing the standard deviation: 

 ( )/
11 ++ −= ddStDev ddδσ  (11) 

After applying the algorithm to both processes, the 1st principal component's weights of load 
wd

L and of supply curve shift wd
b, a set of parameters of BSM was obtained, presented in Tab. 5, 

Tab. 6 and Tab. 7. 
 

Tab. 5: Calibrated parameters of the Load in TBSM 

 αL κL σm
δL 

Load 0.0204105 75.4766 2023.60 
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Tab. 6: Monthly calibrated parameters of the Supply in TBSM 

 a αb κb σδb 
Supply 1.13484e-4 0.0318440 -0.0536667 0.413067 

 

Tab. 7: Monthly calibrated parameters of the TBSM 

Month Load volatility measure σm
L Supply volatility measure σm

b 
1 876.755 0.200464 
2 674.219 0.081697 
3 477.651 0.350756 
4 468.729 0.375337 
5 831.078 0.384563 
6 679.871 0.324813 
7 1092.886 0.364438 
8 748.013 0.104237 
9 1030.650 0.177193 
10 371.965 0.409969 
11 779.300 0.134920 
12 862.887 0.225309 

Average 684.154 0.241054 

 
A comparison of the calibrated parameters between the two versions of the model, BSM and 

TBSM, is shown in Tab. 8. The variances σm
L and σm

b in TBSM are 12-month averages.  
 

Tab. 8: Comparison of estimated parameters in the TBSM and BSM 

 Load process Supply process 
 TBSM BSM TBSM BSM 

α  0.0204 0.3 0.0318 0.75 
κ 75 4 -0.0537 -1.7e-3 
σ  685  0.2411  
σδ 2023  0.4131  
a 1.13484e-4 

 
An important difference between the TBSM and BSM is also the speed of reversion to mean, 

α. In case of BSM load process, αL is about ten times larger than in TBSM, whereas the factor is 
about 20 times bigger in case of supply process αb.  In the BSM, the long-term mean process δ 
evolves daily. Although the weight process wd responds to stochastic influences in load and 
supply processes, it reverts to the long-term mean faster than in the case of TBSM where the 
mean evolves monthly. 
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4 Simulations 
 
The BSM postulates the market-clearing price as an exponential of the two fundamental 

processes, load and supply. 
kk baL

k eP +=  

Both processes - supply and load - can be described in a similar way as a [24×1] vector X 
using generic formulation.  
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By calibrating the model to historical data of load and supply data, we obtain the values of 
parameters that determine the evolution of the load and supply processes on:  

• the monthly timescale: the [24×12] matrix of average monthly 24-hour daily profile µm 
and  

• within a day on the hourly timescale: the [24×12] matrix of monthly principal 
components vm.  

These parameters are independent of the type of model we use for calculation of daily 
weights. 

At the same time, we obtain the parameters that govern the evolution of the daily weights wd; 
mean reversion speed α, long term drift κ, a [24×1] vector of daily weight volatilities σm and 
long-term mean δd volatility σδ. 

Using simulation it is possible to investigate the properties of the two fundamental processes - 
load and supply, which drive the price in both models. The simulation also enables us to 
illustrate their influence on the price.  
 For the purpose of simulation and demonstration of the properties of the model only, the BSM 
volatility measures σ and σδ were approximated using the known parameters of the TBSM. 
Since these values don't represent true estimates, they were annotated as σ' and σδ'. 

• The daily weight process wd evolves on the same timescale in both TBSM and BSM 
models, so their volatility measures should be roughly the same,  

σTBSM = σ'BSM. 
• The long-term mean on the other hand develops much faster, and its volatility should 

therefore be much smaller, divided by a square root of the time constant factor. Assuming 
that there are about 25 working days in a month, the daily volatility should be about 5-
times smaller, 

days 25,' ≅= T
T

TSVM
DVM

σ
σ  

The simulations were performed using either the Bid-based Stochastic Model or Time-scale 
Separated Volatility Model, calibrated to the short-term market-clearing price. The simulations 
investigated the impact of different parameters for both load and supply processes on the output 
of the model. The following properties were investigated: 
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1. Evolution of the average daily short-term market price (spot price) of electricity, as 
influenced by the average monthly 24-hour profiles, µm

L and µm
b, and monthly principal 

components vm
L and vm

b. 
2. Expected value and Standard Deviation of the daily weights wL and wb, driven by the 

daily process parameters, α, κ, σm and σδ. 
3. Development of daily averaged hourly price. 

The results are briefly discussed and shown in the following sections. 
The parameters used in simulation are given in Tab. 9. In addition to the calibrated ones, the 

parameters σ' and σδ' were approximated to demonstrate properties of the BSM and are 
presented in the shaded cells of the table. 

Tab. 9: Parameters of the BSM, used in simulations 

 Load process Supply process 
α  0.3 0.75 
κ 4 -1.7e-3 
σ ' 685 0.2411 
σδ' 400 0.825 
a 1.13484e-4 

 
 

4.1.1 Deterministic price and monthly parameters  

The monthly average spot price in the actual data to which the model was calibrated is shown 
in Fig. 21. There are relatively big differences among certain months, describing a year with 
unusually high summer prices. The summer of 1999 was very hot and the prices were higher 
than the historical levels. Since only a limited amount (14 months) of price data was available, 
the influence of a single month in calibration of supply process was stronger than in load process 
calibration, where almost 20 years of data was available and the influence of excessive months 
are less prominent.  
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Fig. 21 Monthly average of the spot price, New England, May '99-June '00 
 
In Fig. 22, simulated evolution of the average daily short-term spot price of electricity is 

shown, as influenced by the average monthly 24-hour profiles, µm
L and µm

b, and monthly 
principal components vm

L and vm
b. The price as generated by the model exhibits similar 

properties as the actual average monthly price in Fig. 21.  The main difference could be observed 
during the summer months, where the influence of load process dampens the excessive shift in 
supply curve toward higher prices, as dictated by supply process.  

 

4.1.2 Daily weight process properties  

The stochastic properties of the model on the other hand can be illustrated without 
interference of monthly mean values by examining the daily weight processes wL and wb. They 
are driven by four stochastic processes zkL, zk

Lδ,  zk
b and zkbδ and governed by the daily process 

parameters, α, κ, σm and σδ. Interplay of the short-term w process variances, σm
L and σm

b, and 
long-term δ  process variances σL and σb in the Bid-based Stochastic Model is schematically 
shown in Fig. 23. The short-term variances of the mean reverting process, which are bounded, 
dominate in the short run. As time progresses, the dominance of the long term variances prevails. 
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Fig. 22: Simulated average monthly price 

Similar conclusions can be drawn from Fig. 24, where the evolution of the mean value of wL 
and its volatility boundaries are shown. The standard deviation of the process is not uniform over 
the months, what is the consequence of interplay between two volatility measures, σm

L and σLδ. 
At the same time, the volatilities of electricity price differ from one month to another. During the 
periods of peak load, prices tend to be much more volatile than in spring or fall, which is 
reflected in the model output.  

The mean grows steadily according to the long-term growth parameter κL. The weights were 
simulated for a two-year period with a 10.000 simulation runs. 

The mean of the supply process weight, wb, and its volatility boundaries are shown in Fig. 25. 
The mean slowly drifts downwards, and the monthly shapes in standard deviation are more 
pronounced than in load process in Fig. 24.  
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Fig. 23: Volatilities of short- and long-term processes, σ and σδ 

Fig. 24: Daily weights wm
L : mean value and standard deviation 

 



   40

 

Fig. 25: Daily weights wm
b : mean value and standard deviation  

Fig. 26: Daily weights a*wm
L and wm

b : mean value and standard deviation 
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The means and standard deviation boundaries for both processes are shown together in Fig. 
26. Here, wL is scaled with the factor of the exponential shape a.  The volatility boundaries of the 
supply process wb are much broader indicating the dominant source of uncertainty in the 
forecasted price of electricity is the volatility of the supply process. 

 

4.1.3 Daily price using BSM 

Using the BSM it is possible to generate hourly spot price ST  and its volatility. Because the 
intra-day dynamics that can be found both in hourly development of load and hourly clearing of 
market in supply, it is important to have the model that is able to capture the hourly price 
dynamics. On the other hand, it is sometimes also necessary to neglect the hourly dynamics and 
deal with daily prices, as it is the case in certain applications such as forward contracts. 

In the Stochastic Model the price evolves as a sequence of daily, 24-hour vectors of prices.  
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The daily price would therefore be calculated as a daily average of the vector Pd. 
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In the simulation, we have examined the development of the average pricePd during the 
course of one year. The mean and the standard deviation of prices were calculated in 10.000 
simulation runs. 

Fig. 27 displays the mean value of electricity price and the volatility measure (in our case 
standard deviation) boundaries. Both prices and standard deviations exhibit strong monthly traits.  

The standard deviations, when presented alone in Fig. 28 show corresponding monthly 
diversity but generally agree with each other and with the observations on volatility in daily 
weights. 

 

4.1.4 Daily price using TBSM 

The Time-Scale Separated Bid-based Stochastic Model properties have been investigated in 
the same way as the properties of the Bid-based Stochastic Model. Using the parameters from 
Tab. 4, the average daily pricePd was simulated for the period of one year with 10.000 runs.  

The mean value ofPd is shown in Fig. 29 together with the standard deviation as volatility 
boundaries. The overall shape still reacts noticeably to changes in months, while the overall 
impression is that the volatility is somewhat larger than in BSM. The same conclusion could be 
drawn from analysis of standard deviation in Fig. 30. 
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Fig. 27: Average pricePd mean and standard deviation 

Fig. 28: Standard deviation of the average pricePd  
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Fig. 29: Average pricePd: mean and standard deviation 
 
 

Fig. 30: Standard deviation of the average pricePd  
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5 Applications  
5.1 A multi-market model 

5.1.1 Transmission line flow 

We now extend the Bid-based Stochastic Model to simulate the behavior of prices in a multi-
market scenario [17]. Specifically we consider the case of two spot markets connected by a tie-
line of fixed maximum capacity Fd

max. The goal is to model the joint evolution of loads and 
electricity prices in the adjacent markets, and to show how the bid-based model can be used to 
estimate the value of a transmission right between the markets.  

 

 

Fig. 31: Two markets, connected by transmission line 

Scheduled transmission flows occur when there is cross-bidding between markets, that is, 
loads or suppliers in one market decide they are better off purchasing their power in the 
neighboring spot market. A positive flow from market i to market j can be caused by two types 
of actions: 

1. Suppliers in market i decide to bid their power into market j. This causes bi to increase 
and bj to decrease. 

2. Loads in market j decide to bid their demand into market i. This causes Lj to decrease and 
Li to increase. 

The net effect on price of the two actions is equivalent. Without loss of generality we decide 
to interpret all flows as the effect of load cross-bidding. 

To incorporate this behavior into the model, we introduce a new variable qd
i, representing the 

actual quantity bid into market i at time d. The variable Ld
i is interpreted as the native load of the 

market, that is the load, which is physically located inside the market’s borders. Price in market i 
is a function of the total load and supply bid into this market, 

2..1, == + ieP
iii bqai

d  

The relationship between q and L for the two-market example can be written as, 
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where Fd
12 is the flow from market 1 to market 2, which can be positive or negative. 

The power has to be balanced between the markets 
2121
dddd LLqq +=+  

and the tie-line flow Fd
12 is bounded by Fd

max. 
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max221112 FqLLqF ddddd ≤−=−=  

Next we need to address the question of how much cross-bidding of load will occur in a given 
day. We assume that the load is rational, and that if there exists a price differential between the 
markets, load in the expensive market will submit bids into the cheaper market. The magnitude 
of the cross bidding is limited by the capacity of the transmission line. Thus load bids will keep 
shifting form the expensive to the cheap market until one of the following occurs: 

1. The prices equalize, thus removing any incentive for further cross-bidding. 
2. The transmission line becomes congested, preventing the loads from transferring the 

power back to their own location. 
The first case corresponds to the following mathematical condition, 

21
dd PP =  

222111
dddd bqabqa +=+  

The flow necessary to reach price equality, as a function of native load and supply states, is 
given by, 
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The transmission constraint Fmax limits the flow both ways. 
max12max FFF d ≤≤−  

The actual flow between the markets Fd
12, accounting for the limits, can therefore be written 

as, 
( ){ }maxmax1212 ,,ˆminmax FFFF dd −= . 

Prices in two markets, Pd
1 and Pd

2, are equal always equal, until the transmission flow reaches 
the maximum capacity. At this point prices will diverge, and the dynamics of the two markets 
decouples. 

 

5.1.2 Valuing a Transmission Right 

In this section we estimate the value of a transmission right between market 1 and 2. The 
transmission right is interpreted as the right, but not the obligation, to transmit power from 
market 1 to market 2 in any day d. Furthermore we assume that the transmission right is firm, 
that is, it cannot be curtailed under any circumstances. The expected daily profit from owning the 
transmission right can therefore be expressed as: 

( )( )0,max 1212
dddd PPEC −=  

This is equivalent to the value of a spread option between the two markets.  
 

5.1.3 Simulation of the Multi-Market Model 

We attempt to estimate the value in ($/MWh) of owing a transmission right for one day, thirty 
days from today. To better illustrate the qualitative effects of moving to a multi-market 
environment, the following simplifications are made to the bid based price model: 
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1. We use a daily rather than an hourly model for price. This is achieved by substituting the 
vectors µL, µb, vL, and vb, by scalars. 

2. We ignore the dynamics of the mean-process δ, forcing δL and δb to be zero. 
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δδ dd  

The parameters for the supply process in both markets are identical. The mean-value (µ) of 
the load is set 7,000 MW higher in market 2 than in market one, creating a price differential. 
Finally, the maximum transmission capacity is set to 3,500 MW. 
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The model was then run 10.000 times for a 31-day period. The plots displayed below show the 
distribution of loads and prices on the 31st day. 

 

Fig. 32 Histograms of load in two markets, F12 = 0 and F12 = max 

5.1.4 Simulation Results 

5.1.4.1 Simulation results for load 

In Fig. 32, the histograms for the load in the two markets are presented. On the left side there 
are the histograms of market 1, whereas the market 2 histograms are on the right side. The load 
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histograms in respective markets are positioned far apart when transmission capacity is zero, and 
are identical, when transmission line is not congested. 

 

5.1.4.2 Simulation results for prices 

Histograms of prices of the two markets are shown in Fig. 33. Again, the two independent 
markets feature very different price distributions, while the distributions of uncongested prices 
become almost identical. 

Gradual variation of transmission line capacity on two markets' prices is displayed in Fig. 34, 
where we can observe daily evolution of the prices. Uncorrelated at first (TL=0), the prices 
become more and more correlated as we increase the line capacity until they balance out. As 
expected, the turning point of the correlation, Fig. 36, is the mark 3500MW, which is half the 
difference in load between the markets.  

 

5.1.4.3 Value of a spread option as a function of transm. line capacity 

The histograms on Fig. 35 show the simulated distribution of spread option value, based on 
price difference between two markets. As the price in the two markets balances out, the value 
diminishes. 

As the transmission line size increases, the markets become more and more correlated, at the 
same time diminishing price spread and the spread option Cij value,  Fig. 36.  

 

Fig. 33 Histograms of Pd
1 and Pd

2 with F12 = 0 and F12 = max 
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Fig. 34 Daily evolution of price in two markets with various TL capacities 

Fig. 35 Histograms of spread option value C12 with various TL capacities  
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 Fig. 36 Spread option value C12 and price correlation coefficient in various TL capacities 
 

5.1.5 Interpretation of Simulation Results 

From the histograms of prices in the previous section we can see how the capacity of the 
transmission lines affects the probability distribution of regional spot prices. Furthermore, the 
capacity of the line is strongly linked to the correlation of the two spot prices. This in turn affects 
the value of the spread option/transmission right. The higher the correlation between the market 
prices, the lower the probability that they will diverge significantly. Therefore the value of the 
transmission right is inversely proportional to the correlation of their prices, as shown in  Fig. 36.  

The advantage of the bid based model is that we make a quantitative link between the size of 
the transmission line in MWs, and the value of the transmission right in $/MWh. This has 
implications far beyond the simple valuation of transmission contracts. Consider the position of a 
for profit transmission provider who is contemplating whether to add a new transmission line 
between two markets. He needs to know whether he will be able to recover the fixed cost of 
investing in the line by selling transmission rights to market participants. By calibrating the bid-
based model according to current price levels, and then adding the capacity of the new 
transmission line, the transmission owner can simulate future cash flows, and estimate the 
profitability of the investment. 

  

5.2 Generation asset valuation with unit commitment constraints 
 
The question of how to value generation assets is critical in a competitive power market. This 

problem is typically approached by defining the generator in terms of its efficiency (heat rate), in 
converting fuel to electricity. Based on this rating, the valuation is performed by modeling the 
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generator as a spread option between the price of the fuel used and the price of electricity. The 
payoff from such an option is given by 

{ }),0C(PPmaxCF f
k

e
kk −=  

where Pe is the price of electricity and C is the cost marginal cost of production as a function 
of fuel price Pf. 

This formulation however ignores several important constraints involved in the operation of 
the unit, such as start-up and shut down costs, minimum run time, and maximum ramp rate. 
These constraints have a significant effect on how units are bid into, and dispatched by, the spot 
market operator, and therefore on the owners' cash flow. By ignoring the unit commitment 
constraints, one is likely to undervalue plants with significant flexibility (such as micro turbines 
and fuel cells) while overvaluing large inflexible fossil plants. 

The reason why the unit commitment problem is often ignored in the valuation of a power 
plant can be linked to computational complexity. In general, the operator of the unit has to solve 
a complex dynamic programming problem to arrive at the optimal unit commitment decision for 
the generator. This is a computationally intensive problem, which grows exponentially with the 
time horizon over which the optimization is carried out. While it is feasible to solve the unit 
commitment decision for a day ahead bidding problem, it is extremely challenging to extend this 
notion to a multi-year valuation problem. 

By applying a principal component-based price model, we are able to define today’s net profit 
from the generation asset as a function only of today’s and yesterday’s average spot price. By 
storing the mapping from the state of the spot price to the cash flow of the generator in a lookup 
table, we are able to simulate generator profits over multiyear periods with minimal 
computational complexity. The model also allows for stochastic fuel prices. This approach is 
described in detail in [20]. 
 

5.3 Modeling of the long term dynamics of the electricity prices 
 
The success of deregulation cannot be measured based on short-term changes in electricity 

price levels. The reason many nations are going through the painful process of introducing 
competition into the electric utility industry is to induce technological innovation and create the 
right long-term incentives for future investments into the market. These two results are highly 
interdependent. The arrival of improved, cost efficient solutions to generate electricity leads to a 
surge of new investment as old, inefficient generators are pushed out of the market. 

Because it decomposes price movements into supply and demand components, the bid based 
price model lends itself nicely to analysis of the interaction between technological innovation 
and investment. A possible extension of the model to deal with this approach is to change the 
form of the supply mean process δb. We postulate the form as 

b
k

b
Tk

b
Tk

bb
k

b
k zFI δδσκδδ +−=− −−+ )(1 . 

In this formulation, Ik
b is an index representing the cost efficiency of the most attractive 

generation technology available at time k. Fk represents the average forward price over the next 
twelve months (currently forward prices are not available beyond this horizon). According to the 
formula, the growth rate of the supply bid curve (note that a negative shift in δ represents an 
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increase in the supply) is proportional to the difference between the cost of production index and 
the forward price. The rationale is that if the forward price goes far above the cost of production, 
the expected profit from owning a unit will be high, and there will be a rush to invest in new 
generation. Note that we have included a delay term T in the index as well as the forward price. 
This corresponds to the delay between the decision to invest in the unit, and the time that the unit 
actually comes on-line. The simulation and further analysis of this formulation is left for future 
work. 
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6 Conclusion 
 
A wide range of literature has evolved on the modeling of electricity markets, and the 

associated price dynamics. In the introduction we listed a number of approaches; quantitative, 
cost based, economic equilibrium, agent based, and experimental, all with their own advantages 
and drawbacks. The modeling approach used is generally dependent on the type of problem 
addressed. A marketer may use one type of model for optimizing the short term bidding of 
assets, another for hedging in the forward markets, yet a third model for evaluating investment 
decisions. Ultimately, the user would like all of these models to reflect the best current estimate 
of the future. However, given the range of modeling approaches, it is often hard to check 
whether the models used are consistent with each other.  

The bid-based model presented in this report is intended as a fundamental model for 
electricity price dynamics, and is to be used in a wide range of applications. The emphasis was 
placed on incorporating the unique characteristics of electricity prices, including seasonality on 
multiple time scales, lack of load elasticity, stochastic supply outages, strong mean reversion, 
and stochastic growth of load and supply. 

The second emphasis was reducing the computational complexity of the model. This was 
achieved by applying techniques such as principal component analysis, which reduced the 
dimensionality of the model drastically, with a minimal loss in performance. 

A timescale-separated version of the model was calibrated on real market data (New 
England). The lack of price data on the market makes the calibration on the supply side of the 
model tentative, but as more data becomes available, the parameter estimates will become firm. 
The scheme for calibrating the original version of the model is outlined, but its implementation is 
left to future research. 

Multiple extensions of the model are possible to support a number of crucial decision 
problems in the market. We illustrated how a two-market version of the model can be used to 
estimate the value of transmission rights in a multi-market environment. This is applicable not 
only to market participants who wish to purchase these rights, but also has tremendous impact on 
the decision making of future for profit transmission owners. A second application of the model 
is illustrated in the valuation of generation assets with unit commitment constraints. Here the use 
of a principal component based model allows us to greatly reduce the computational complexity 
of the problem as illustrated in [20]. Finally, a new version of the model is proposed, to examine 
the long-term interaction between technological innovation and price trends. 

The creation of a model which mimics the fundamental behavior of the market and its 
underlying physical and economic components lends itself to a number of further extensions, 
opening the door to future research possibilities. 
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7 Appendix A: Derivation of Principal Components 
 
Using the Principal Component Analysis (PCA), it is possible to reduce the dimensionality of 

the problem by defining the new orthogonal basis. PCA generates a new orthogonal set of j 
variables, j ≤ n, where n is the number of the original variables in the observation set.  They are 
called Principal Components (PC). The new variables are selected so that those describing the 
same driver can be replaced with a single new variable. Each principal component is a linear 
combination of the original variables. Because PCs are orthogonal to each other, there is no 
redundant information.  

The first PC is a single axis in space. When each observation is projected on that axis, the 
resulting values form observations of a new variable, the variance of which is the maximum 
among all possible choices for the first axis. The second PC is orthogonal to the first, and the 
second variable's variance is again maximal among all possible choices for this axis. As more 
and more PCs are selected, they contain less and less variance. A simple two-dimensional 
example is shown of Fig. A.1, where vector X can be written as in (4), j = n = 2. 

 jjnn bbbyayaya ννν +++=+++= KK 22112211X  (12) 

The total number of PCs is usually equal to the number of original variables n. However, the 
first m PCs usually account for most of the variance in the original observations, j ≤ n. Sum of 
variances of the new variables equals sum of variances in the new variables. 
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Fig. A.1: A two dimensional example of PC derivation for vector X 

 
The iterative procedure of principal component derivation can be summarized in the 

following steps: 
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1. Find the largest PC: maximize the variance of nn
T bb νν ++= K11111 ?b : 

[ ]111 )var(max Cbbxb TT =   s.t.  1
1

2
111 == ∑

=

n

i
i

T bbb  

where b1 is the vector of weights of the first principal component ν 1 and C is the covariance 
matrix of x. The condition of bTb = 1 is necessary for the unique solution to exist; otherwise the 
weights could become arbitrarily big, leading to infinite variance. 

[ ]
[ ] T

112111

T
112111

 ,,,

 ,,,

n

nbbb

ννν K

K

=

=

?

b
 

2. Repeat the process for the subsequent PCs, until number of PCs = rank(C).  
3. Determine, how many PCs are necessary to describe the process adequately. Form the 

reduced-order principal component  [j × n] matrix ν *, where only the first m PCs are retained. A 
detailed description of the routine can be found in [11]. 

The eigenvalue λi, associated with i-th PC corresponds to the equivalent number of variables 
this PC represents. A PC with an eigenvalue of λi = 3.9 describes as much variance as on average 
3.9 original variables. By dividing the eigenvalue with the total number of PCs, j, we can obtain 
a total percentage on variance explained by each PC. 

When all n PC have been determined, it is necessary to determine j, how many PCs are 
necessary to describe the data accurately enough. The three most common measures are: 

1. Retain all PCs that represent more variance than original variables on average (its λi < 1).  
2. Scree test. The incremental plot of variance accounted for by every PC is called scree plot. 

The number of points before leveling-off of the curve is the number of PCs retained.  
3. Total variance of the data accounted for by the retained PCs. Some authors propose to 

retain as many PCs as to account for about 90% of the variance [12], while others propose less 
stringent criteria, depending on the reasons for performing the PCA [10]. 
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8 Appendix B: Joint parameter estimation using MLE and KF 
 
Unknown parameters of the stochastic model can be estimated using Maximum Likelihood 

Estimation (MLE) coupled with Kalman Filter (KF) state estimator. The iterative procedure 
estimates parameters of the model as to minimize the likelihood function and then computes the 
resulting system response using Kalman Filter. In the appendix we derive Kalman Filter and 
outline the MLE procedure. 

 

8.1 Derivation of Kalman Filter 
 
A Discrete Kalman Filter is a technique for estimation of states of a stochastic system [1]. It 

consists of a set of mathematical equations and provides an efficient recursive solution of the 
least-squares method. It addresses the problem of estimation of states x of a process, described 
by stochastic difference equations 

ttttt ?HBuAxx ++=+1  

where A is the system matrix, relating the system state xt at time t to the next state xt+1at time t+1 
in the absence of the controlling input. B is the matrix relating the input ut to the state xt. The 
measured noisy system output at time t yt is  

ttty ε+= Cx  

The random variables η t and ε t represent process and measurement noise. They are assumed 
to be independent of each other and with normal probability distributions. 

),0( Q? Nt ≈  
),0( RNt ≈ε  

To write the BSM in the state space form, the system state xt, the process noise η t, the input ut 
and output yt signals, the system matrices A, B, C and Γ , and noise covariance matrices Q and R 
take the following values. 
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8.1.1 Kalman Filter 

Let's define tt 1ˆ +x  as our a-priori estimate of state vector at step t+1, and 11
~

++ ttx our a-posteriori 

estimate of state vector at t+1, given measurement zt+1. We can then define a-priori and a-
posteriori estimate errors et+1/t  and et/t  as 

ttttt 11 ˆ ++ −= xxe  

ttttt xxe ~−=  
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An estimate of the a-priori estimate error covariance is therefore Pt+1/t , while of a-posteriori 
estimate error covariance being Pt/t . 

[ ]T
tttttt E 111 +++ = eeP  

[ ]T
tttttt E eeP =  

The algorithm of Kalman filter computes the equation that produces the optimal a-posteriori 
estimate 11

~
++ ttx as a linear combination of the a-priori estimate tt 1ˆ +x and a weighted difference 

between an actual measurement zt and predicted measurement C tt 1ˆ +x . When they agree 

completely, the residual tty 1+ is zero. 

( )tttttttt y 111111 ˆˆ~
++++++ −+= xCKxx  

The factor K in the equation is called Kalman gain and is chosen in such a way as to minimize 
the a-posteriori covariance Pt/t .  
 

8.1.2 KF Algorithm 

The Kalman filter algorithm is iterative procedure, that estimates process states as new 
measurements become available in each time step. Using initial estimates of system state x0/0 and 
a-posteriori error covariance P0/0, it computes the optimal a-posteriori estimate 11

~
++ ttx and the 

pertaining Kalman gain K. The procedure is described below: 
  

1. Select initial estimates: 00x 00P  

2. Compute time update (prediction) equations: 
ttttt BuxAx +=+

~ˆ 1    a-priori estimate of state vector x 
TT

tttt GQGAAPP +=+1   a-priori error covariance matrix 

3. Compute measurement update (correction) equations: 

[ ] 1

111111

−

++++++ = T
tttt

T
tttt CPCCPK  Kalman gain 

ttttt yy 111 ˆ +++ −= xC    residual: measurement innovation  

ttttttt y 11111 ˆ~
+++++ += Kxx   a-posteriori estimate of state vector x 

[ ] ttttt 1111 ++++ −= PCKIP   a-posteriori error covariance estimate 

4. Repeat 2 and 3 for all t ∈[1,...T] 
The procedure is schematically shown in Fig. B.1. 
 

8.2 Maximum Likelihood Estimation of model parameters 
 
The idea behind Maximum Likelihood Estimation is to compute the optimal parameters of the 

model by iteratively modifying them to minimize a likelihood function [5], [6], [7].  
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Fig. B.1 Kalman filter operation flowchart. 

 
After constructing the model representation in the state space and setting up the KF 

procedure, we construct a vector of unknown parameters θ that contains the unknown parameters 
of the model. 

[ ]Tδσσκα=?  
Using the covariance of the innovation process Nt+1/t , obtained by the Kalman filter,  

T
tttt CCPN 11 ++ =  

we can construct a log likelihood function J. 
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The procedure iteratively updates the parameter vector θ according to the equation 

( ) ( )
?
?

?M??
∂

∂
−= −+

i
iiii J11 ρ  

where M(a) is a Hessian matrix of the log likelihood function  

( ) ( )
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J
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∂
=

a
aM

2

 

 

The procedure is schematically presented in Fig. B.2. 

Time Update ("Predict") 

1. Project the state ahead 

ttttt BuxAx +=+
~ˆ 1  

2. Project the error covariance ahead 
TT

tttt GQGAAPP +=+1  

Measurement Update ("Correct") 

1. Compute the Kalman Gain 

[ ] 1

111111

−

++++++ = T
tttt

T
tttt CPCCPK  

2. Update estimate with measurement y t+1 
( )tttttttt y 111111 ˆˆ~

++++++ −+= xCKxx  

3. Update the error covariance 

[ ] ttttt 1111 ++++ −= PCKIP  

Initial estimation 

00x , 00P  
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Fig. B.2 Maximum Likelihood estimation flowchart  

1
1 δ<−+ ii ??  

( ) 2
1 δ<+iJ ?  

Initial values: θ0, ρ0 xt|t , 
P  

Kalman Filter 
- obtain J 

Maximum likelihood update of θ 

( ) ( )
?
?

?M??
∂

∂
−= −+

i
iiii J11 ρ  

Unconstrained optimization 
- obtain M, ∂J/∂θ 

Optimal parameter vector 
θ* 

θi+1 
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