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Abstract

The paper describes a practical approach to implementing the congestion cluster pricing method

as a viable congestion management system (CMS) in the operation of electric power systems.

First, the congestion cluster pricing method is described as an attractive choice for the CMS,

which eÆciently allocates the existing transmission capacities to various system users.

Then, the congestion cluster pricing method is formulated as a stochastic optimization problem

of the cluster design. In the formulation the performance of the pricing method is introduced as

a measurable function of cluster design, based on the conceptual criteria necessary for an e�ective

CMS. We de�ne the search space from which a particular design may be selected. Following

the formulation the stochastic elements to the optimization problem are discussed by developing

suitable representation of various uncertainties in the system. It is shown that the complexity of

the problem leads to the search based methods as the preferred option for solving for the optimal

cluster design. However, because of the high degree of the stochastic nature and because of the

large size of the search space, direct application of the search based method to the problem is not

feasible.

Finally, some reasonable approximations are suggested to solving the problem thus making it

a practical approach to implementing the congestion cluster pricing method. A numerical example

is given to illustrate the proposition.



I. Introduction

The maximization of the system eÆciency is always at the heart of enforcing a satisfactory

regulatory regime in the electric power industry. Under the vertically integrated utility

structure, a strict oversight is successfully imposed on the operation of the existing generation

and transmission resources for optimizing the short term eÆciency often quanti�ed as the

system-wide generation cost in meeting the given load at each hour. The same oversight,

however, is met with a less than favorable result when it is imposed on the planning for

optimizing the long term eÆciency measured in terms of prudent investment decisions. This

is mainly due to the diÆculties in making judicious investment decisions under uncertainties

through a centralized decision making process.

The competition and market mechanism are introduced to improve on this long term

ineÆciency through the deregulation of the industry. Here the well designed market structure

replaces the strict regulation regime, and the system-wide eÆciency (both long term and

short term) is achieved not through an explicit coordination by a single utility but rather

through decentralized decision making processes of many entities where the entities are driven

by economic incentives and �nancial risks. The e�ective operation and prudent investment

are the result of placing the proper incentives/risks in the form of �nancial pro�t to the

suitable entities.

It is important to recognize that there is a considerable di�erence in choosing a regulatory

regime and designing a market structure. In designing a market structure, the objective is not

the explicit optimization of short term and long term eÆciencies as in choosing a regulatory

regime, but is rather an implicit one of accommodating physical/�nancial transactions, that

lead to optimization of system eÆciency, as well as possible.

In many developing electricity markets, the trades in spot markets are frequently linked

to the short term eÆciency as the timely utilization of existing resources translates to the

immediate reduction in overall generation cost. The bilateral transactions, on the other

hand, are often associated with the long term eÆciency since the investment decisions are

directly a�ected by the information on utilization of resources over a sustained period of time

often revealed through bilateral transactions. Plus, the technology driven infract-structure of

the electricity suppliers is hand in glove with the direct access and customer choices possible
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only through bilateral transactions.[2]

Unlike other commodities, the peculiar characteristics of the power system make it dif-

�cult to design a market that admits straightforward execution of bilateral transactions.

These characteristics include but not limited to the strict requirement for near real time

balancing of supply and demand, the non-storability of electricity in an economical way, the

lack of controllability in power ows throughout the transmission grid, and the existence of

multiple generation (and up to certain degree transmission) technologies. Because of these

characteristics when some parts of the grid hit the physical transfer limits referred to as the

transmission congestion, some generators need to be constrained o� and some constrained

on often in out of merit order in order to relieve the congestion in near real time. This

process of choosing which generators to dispatch in the presence of congestion is called, the

congestion management system (CMS).[4]

The CMS plays a signi�cant role in operating the energy market since it limits certain

system users from participating, in out of merit order, in the presence of congestion. For

example, if a supplier involved in a bilateral transaction is selected as the generator to be

constrained o�, this bilateral transaction needs to be curtailed despite the economic adequacy

in generation of the supplier.

At the time of writing, there are two schools of thoughts in implementing a market-based

CMS. They are the bus-based CMS and the cluster-based CMS. In bus-based CMS, each

node in the system network receives a particular nodal price based on supplier's willingness

to produce so that the quantity produced is limited by this price. The nodal pricing method

is an example of the bus-based CMS.[7] In the cluster-based CMS, the nodes belonging to

a same cluster receives a single cluster-wide price. The congestion cluster pricing method is

an example of the cluster-based CMS.[8]

The cluster-based CMS may be more desirable in many markets compared to the bus-

based CMS since it is much more accommodating to implementing bilateral transactions

by providing transparent information on the status of transmission (system) congestion.

The uniform prices within clusters are also the advantage of the cluster-based CMS as they

considerably simplify the computation of �nancial risks in bilateral transactions arising from

the limitation on generation in the presence of transmission congestion. However, there

are some disadvantages to the cluster-based CMS. The disadvantages are related to the
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unfavorable increase in cost of dispatched generators in short term. The short term dispatch

is suboptimal due to two factors: (1) the cost from the cluster-wide prices in inter-cluster

pricing and (2) the cost from the uplift charges in intra-cluster pricing.

The congestion cluster pricing method is quite suitable as a viable CMS as it reduces the

the e�ect of disadvantages while preserving the e�ect of advantages of the implementation

of the cluster-based CMS.[9] The key to the method is the novel approach proposed in [10]

used to compute the sensitivity measures of injection.

The implementation of the congestion cluster pricing method consists of two steps: (1)

aggregation of individual nodes into clusters and (2) computation of cluster-wide prices.

The resulting clusters and prices determine an operating condition that is at the optimum

with respect to some pre-de�ned objective function while keeping the power transfer across

cluster interfaces within the acceptable limits. The more details of the congestion cluster

pricing method can be found in [8] and [9].

The number of clusters and the duration of �xed cluster boundaries are required to be

speci�ed ahead of time with respect to some heuristic measure of long term eÆciency ac-

cording to the need of the market and its participants. Typically, the desired number of

clusters is limited to at most 30, and the duration is limited to at least a season. The system

operator/transmission provider is then assigned with the task of cluster design, i.e. de�ning

the cluster boundaries for aggregating individual nodes into clusters.

The minimum desired criteria for the congestion cluster pricing method can be summarized

as

1. the transaction between any buses within the same cluster have little impact of power

ows on the congested transmission lines

2. the energy cost computed after relieving inter-cluster congestion is relatively small

3. the additional energy cost necessary for relieving intra-cluster congestion is relatively

small

The �rst criterion is related to accommodating the bilateral transactions by providing trans-

parent information on the status of transmission (system) congestion. The cluster aÆliation

of each node a�ords enough transparent information to market participants how to structure

bilateral transactions so that the congestion charge remains within the acceptable bounds.

The second and the third criteria are related to reducing the cost of dispatched generators in

4



short term arising from the cost in inter-cluster pricing and the uplift charge in intra-cluster

pricing. In this paper we examine the problem of the cluster design so that the above criteria

are well met.

The paper is organized as follows:

Section II shows the problem of the cluster design formulated as a stochastic optimization

problem. In the formulation the performance of the pricing method is introduced as a

measurable function of cluster design, based on the conceptual criteria necessary for an

e�ective CMS. In the section we also de�ne the search space from which a particular design

may be selected and discuss the stochastic elements to the optimization problem. The search

based methods are introduced as the preferred option for solving for the optimal cluster

design given the high complexity of the optimization problem in Section III. Some reasonable

approximations to the search based methods are suggested to solving the problem making

it a practical approach to implementing the congestion cluster pricing method. Section IV

presents the numerical examples to illustrate the proposition, and Section V summarizes the

conclusions of the paper.

II. Formulation of Cluster Design Problem

Throughout the paper the formulation of the problems is performed under the following

two assumptions.

1. DC power ow

The DC power ow equations in matrix notation are written as:

BÆ = QGi
�QDi

(1)

where

Æ : the voltage angle vector

QGi
: the real power generation vector for buses Gi

QDi
: the real power load vector for buses Di

Then the ow vectors for lines can be computed as

Fl = HÆ (2)

where H is the linearized ow matrix for the system.
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2. Quadratic generation cost

The generation cost of supplier Gi, CGi
, is assumed to be quadratic function of the

output given by,

CGi
(QGi

) = aGi
Q2
Gi

(3)

where

QGi
: the dispatched generation amount at node Gi

CGi
: the total cost of generation at node Gi

expressed in terms of QGi

This implies that under the perfectly competitive market condition, the optimal produc-

tion decision for the given price is to generate based on the marginal cost given by,

MCGi
=

dCGi
dQGi

= 2aGi
QGi

(4)

First, we present the formulation of the aggregation step in the implementation of the

congestion cluster pricing method as a stochastic optimization problem given by

�? = argmin
�2�

Z T

0

J(�; t)dt � E

"Z T

0

L(�; �(t); t)

#
(5)

where � represents the search space from which various cluster design alternatives can be

selected for aggregating individual nodes into clusters. In Eq. (5) the performance measure

denoted by J(�; t) is the expected value of the sample performance, L(�; �(t); t) which is a

function of the cluster design, �, and the uncertainty, �(t) in the system. Given that it is

desired to keep the same cluster boundaries for a certain period of time, i.e. a season, T

represents the duration of �xed boundaries. A slightly modi�ed form of Eq. (5) is a little

more useful as the minimum time scale at which the operation of the system takes place is

typically one hour. Thus, the optimization problem of the interest is given by

�? = argmin
�2�

TX
k=0

J(�; k) � E

"
TX
k=0

L(�; �[k]; k)

#
(6)

A. Modeling Uncertainties in the System

In Eq. (6) the uncertainty, �(t) in the system can actually be broken into three parts: the

uncertainty in load �QDi
(t), the uncertainty in generation bid, �CGi (t), and the uncertainty
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in status of equipment, i.e. generator or transmission line, �QGi
or �Fl respectively. The

uncertainty in load is related to the inability of the system operator to perfectly forecast

the demand. This is due to the fact that many variables a�ecting the demand such as the

ambient temperature, etc. are rather unpredictable. The uncertainty in generation bid is

related to the inability of the system operator to predict the bidding behavior of individual

supplier within the system. The reason for this is because the variables inuencing the

bidding behavior such as fuel cost, unit commitment strategy, etc., are for most part unknown

except to the supplier. The uncertainty in the equipment is related to the inability of the

system operator to determine the status of either generators or transmission lines in advance

since indeterminate variables such as an overgrown tree near transmission lines are the main

cause for equipment outages.

There are many ways of accounting for the discussed uncertainties depending on the usage.

For our purposes, we need a time series representation of each uncertainty.

1. Modeling load uncertainty

The time series model of load can be represented in a general version of a discrete time

random walk by

QDi
[k + 1] = fDi

�
�QDi

[k + 1]; QDi
[k]
�
+ eQDi

[k + 1] (7)

where eQDi
[k] is normally distributed with zero mean and variance �2QDi

and is indepen-

dent of eQDi
[l] for any k 6= l. The expected value of the demand at k is denoted with

�QDi
[k] while the projected demand at k computed through Eq. (7) is indicated with

QDi
[k]. Typically f(�) is assumed to take on either linear or exponential form, and the

parameter estimation is performed to complete this regression model.[1]

2. Modeling generation bid uncertainty

The time series model of generation bid can be represented in a similar way by

MCGi
[k + 1] = 2aGi

[k + 1]QGi
+ bGi

[k + 1] (8)

where typically the slope, aGi
is assumed to be �xed, i.e. aGi

[k] = aGi
and the intercept

follows another linear regression model given by

b[k + 1] = b[k] + eCGi [k] (9)
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where eQCGi

[k] is again normally distributed with zero mean and variance �2QCGi

.[1]

3. Modeling equipment status uncertainty

The time series model of equipment status can be represented using a conventional

Markovian chain consisting two states as shown in Figure 1. The parameters for the

Unit 
Down

Unit
Up

1−µ

1−λ

λ

µ
0 1

Fig. 1. Markovian Chain Modeling of Equipment Status

failure rate and the repair rates are denoted by � and � respectively for each component

in the �gure. Using these parameters, the governing equations for transition probability

for states 0 and 1 are given by

�0[k] = �
�

�+ �
[1� (�+ �)]k +

�

�+ �
(10)

�1[k] =
�

�+ �
[1� (�+ �)]k +

�

�+ �
(11)

respectively given that the component is initially in the \up" state.[6]

B. Function for Sample Performance

In Eq. (6) the function describing sample performance, L(�; �[t]; k) determines how the

superior designs are compared to the inferior ones; i.e. if E [L(�i; �[k]; k)] < E [L(�j ; �[k]; k)],

then �i is a better cluster design than �j. Thus, the function is directly related to the

various criteria for a good congestion cluster pricing method. The minimum desired criteria

for the method are already discussed in the previous section and are listed here again for

completeness:

1. the transaction between any buses within the same cluster have little impact of power

ows on the congested transmission lines, LD(i;j)(�; �[k]; k)

2. the energy cost computed after relieving inter-cluster congestion is small, LQGi
(�; �[k]; k)

3. the additional energy cost necessary for relieving intra-cluster congestion is small, L�QGi
(�; �[k]; k)

Limiting the sample performance to reect only the measures of the above three criteria, we

consider the overall sample performance function to be given as

L(�) = �D(i;j)LD(i;j)(�) + �QGi
LQGi

(�) + ��QGi
L�QGi

(�) (12)
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where �'s denote the relative importance factors of each criterion. Typically, the factors are

selected such that �D(i;j)LD(i;j)(�) � ��QGi
L�QGi

(�) � �QGi
LQGi

(�).

The congestion distribution factors (CDFs) proposed in [10] give good measure of the

impact of transactions between buses to the congested lines. CDFs are derived from dis-

tribution factors. First, distribution factors in usual sense are computed twice with respect

to two di�erent slack bus locations within the same system for transmission line of interest,

i.e.
n
D(i;j)

m

o
and

n
D(i;j)

n

o
where bus n is used as the slack bus for the �rst computation, and

bus m is for the second. Then, the di�erence between these two sets of distribution factors,

�(i;j)
m;n , is the result of having two slack buses in di�erent location. De�ning the di�erence as

�(i;j)
m;n f1g =

n
D(i;j)

m

o
�

n
D(i;j)

n

o
(13)

where f1g is the vector of all ones, �(i;j)
m;n , can be expressed as [10]

�(i;j)
m;n = D(i;j)

m (n) = �D(i;j)
n (m) (14)

where D(i;j)
m (n) denotes the nth element of the vector

n
D(i;j)

m

o
.

De�ne the shift vector, � as

�i;j = �
D(i:j)

m (i) +D(i;j)
m (j)

2
(15)

for given distribution factors,
n
D(i;j)

m

o
with respect to the slack bus, m. Then, we can

subtract out the locational e�ect of slack bus from distribution factors by adding the sum

of shift vector elements to the given distribution factors. The resulting vectors are what is

de�ned as CDF,
n
D(i;j)

o
: n

D(i;j)
o
=
n
D(i;j)

m

o
+ �(i;j)f1g (16)

The magnitude of resulting CDF de�nes the sensitivity of the ow in transmission line of

interest on a transaction; this formulation ensures that sensitivity of ows on the line of

interest with respect to a bus injection decreases monotonically as the electrical distance

between the line and the bus increases. The sign denotes if the transaction will increase or

relieve the congestion.

The energy cost after relieving inter-cluster congestion is closely related to the computation

of cluster-wide prices step in the implementation of the congestion cluster pricing method.

As a matter of fact, the equations used for computing the energy cost and the cluster-wide
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prices are the same. Suppose the nodes Gi; Gi+1; � � �; Gi+k are in the cluster zj. Then, at

some t the new generation cost associated with the cluster zj is given by

Czj(Qzj ) = fzj(QGi
; QGi+1

; � � �; QGi+k
) (17)

where fzj is the monotonically increasing nonlinear function representing the least cost com-

bination of QGi
's in zj for producing Qzj . The marginal cost of zone zj, MCzj , can be used

in order to compute fzj (�) where

MCzj =

8>>>>>>>>>>>><
>>>>>>>>>>>>:

�
1
2al

+ 1
2al+1

+ � � �+ 1
2al+s

��1
Qzj

Qzj
2 RI1�

1
2am

+ 1
2am+1

+ � � �+ 1
2am+t

��1
Qzj

Qzj
2 RI2

�

�

��
1

2an
+ 1

2an+1
+ � � �+ 1

2an+u

��1
Qzj

Qzj
2 RIk

(18)

where RIi 's de�ne the region of operating condition in cluster j with q number of generators

are still below the generation limits. ar's represent the coeÆcient of associated marginal cost

of those generators below their generation limits.

With Czj(Qzj), the generation costs (and/or cluster-wide prices) are computed by solving

the optimization problem given as

Q?
zj
= argmin

Qzj

X
zj

Czj(Qzj ) (19)

subject to the load ow constraint, i.e., total generation is equal to system load,

X
zj

Qzj =
X
Di

QDi
: � (20)

the congestion interface ow limit constraints, i.e., the power ow on any line l along only

the congestion interfaces is within the maximum rating of the line,

jFlj =

������
X
zi

HlziQzi �
X
Di

HlDi
QDi

������ � Fmax
l : �l (21)

and the generation limit constraints, i.e., the dispatch amount in cluster zj is within the sum

of maximum rating of the corresponding generators within the cluster

0 � Qzj �
X
Gi2zj

Qmax
Gi

: �zj (22)
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The computation of Hlzi yields

Hlzi =
dFl

dQGi

@QGi

@Qzj

+
dFl

dQGi+1

@QGi+1

@Qzj

+ � � �+
dFl

dQGi+k

@QGi+k

@Qzj

(23)

with
dFl

dQGi

= HlGi
(24)

and with

QGi
=

1

2ai

 
1

2ai
+

1

2ai+1
+ � � �+

1

2ai+k

!�1
Qzj (25)

if QGi
2 RIi.

The solution to the optimization problem (19) then given by

�zi = �+
X
l

�lHlzi (26)

where �l 6= 0 if and only if jFlj = Fmax
l and

QGi
=

8>>>><
>>>>:

Qmax
Gi

�zi;Gi2zi � pmax
Gi

�zi
2aGi

0 � �zi;Gi2zi � pmax
Gi

0 otherwise

(27)

where pmax
Gi

= 2aGi
Qmax
Gi

. Graphically, the above derivation has the following interpretation.

Without loss of generality we consider a zone consisting only two generators. Given the

supply bids at nodes Gi and Gj, the aggregate supply bid for zone zk can be constructed as

shown in Figure 2. For Region I

G
i

2aG
i

pmax
G

i

G
i

Q
max
G

j

($/MW)BG
j

2aG
j

2aG
j

2aG
j

pmax
G

j

($/MW)B

Q
max Q

max
z

k

-11 1+
2aG

i

REGION I REGION II
($/MW)Bz

k

Fig. 2. Aggregation of Marginal Supply Bids in Zone k
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dFl
dQzk

= 1

2aGi

�
1

2aGi
+ 1

2aGj

��1
HlGi

+ 1

2aGj

�
1

2aGi
+ 1

2aGj

��1
HlGj

(28)

and for Region II
dFl

dQzk

= HlGj
(29)

The total energy cost after relieving inter-cluster congestion is then given by

TCQGi
=
X
zi

�ziQzi (30)

The computation of the energy cost after relieving intra-cluster congestion is similar to that

after inter-cluster congestion. The optimization problem to be solved in order to determine

the location marginal prices is given by

�QGi
= arg min

�QGi
;Gi2Z

X
Gi

CGi
(�QGi

) (31)

where

�QGi
: the adjusted generation amount at node Gi

Z : the subset of clusters experiencing intra-

cluster congestion

subject to the load ow constraint

X
Gi2Z

�QGi
= 0 (32)

the transmission line ow limit constraints, i.e., the power ow on any line l in the entire

system is within the maximum rating of the line,

jFl +�Flj = jHlGi
(QGi

+�QGi
) +HlDi

QDi
j � Fmax

l (33)

and the generation limit constraints, i.e., the dispatch amount at node Gi 2 Z is within the

maximum rating of the corresponding generator

0 � QGi
+�QGi

� Qmax
Gi (34)

The additional energy cost necessary for relieving intra-cluster congestion is then given by

TC�QGi
=

X
Gi2Z

aGi
�QGi

(QGi
+�QGi

) (35)
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III. Practical Solution to the cluster Design Problem

After the formulation we discover quickly that the so-called real value based methods are

unlikely to yield a good result for solving this particular optimization problem. The real

variable based methods refer to the analytical approaches to �nding the optimal solution

which require a sequential improvement by examining the gradients of smooth trajectories

in the system with respect to search space. The reason for the diÆculty in applying the real

variable based methods to the problem lies on the lack of the nice structure of the search

space, �, such as continuity, di�erentiability, etc., which are essential for �nding smooth

trajectories and computing gradients. This leads to believe that the search based methods

are more suitable for the optimization problem in Eq. (6). The search based methods refer

to the simulation supported approaches to �nding the optimum which requires a ranking of

all possible design after a thorough evaluation of performance of each design alternative.

In order to apply the search based methods for the problem in Eq. (6) we �rst examine

the search space, �. Suppose that the system is composed of NTR transmission lines and

NB buses; NG generators and ND loads, and that the maximum number of clusters allowed

is limited to Nz. Since once the maximum number of clusters are �xed, it is always possible

to devise a cluster design to perform better than or at least equal to any existing design by

allowing one more cluster in terms of L(�; �[k]; k) de�ned earlier [9], we start with the search

space of size, j�j given by

j�j = N (NB�Nz)
z (36)

A typical electric power system consists of hundreds to thousands of buses, so conserva-

tively let NB = 100. Even if the number of clusters allowed is less than 10, assume Nz = 5,

the number of designs to be considered in the search based methods is given by

j�j = 5(100�5) � 2:5� 1066 (37)

which is typical by combinatorial standards.

Even though a further reduction in the size of � may be possible depending on the topology

of system, it is clear from examining the size of the search space that a brute force application

of the search based methods is not likely to be a good approach for any reasonable simulation

time. Therefore, it is necessary to exploit any structural characteristics of the search space

linked to the sample performance function.
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One such characteristic is the �rst cut cluster design based on CDFs. Even though no

analytical justi�cation on the e�ective measures is available, there are a few empirical results

which suggest that the size of the search space can be reduced signi�cantly by designing

clusters based on CDFs with little concerns for carelessly excluding good designs from the

remaining search space.[8] This is especially true if the sample performance function,

L(�) = �D(i;j)LD(i;j)(�) + �QGi
LQGi

(�) + ��QGi
L�QGi

(�) (38)

is such that [9]

�D(i;j)LD(i;j)(�)� ��QGi
L�QGi

(�)� �QGi
LQGi

(�) (39)

A practical approach to the clustering design, thus starts with the system operator iden-

tifying the potentially critical lines, some of which may be congested at the same time or at

di�erent times. Typically, the number of critical lines, N c
TR, is less than �ve, so again con-

servatively let N c
TR = 3. For each of three transmission, corresponding CDFs are computed.

Then, based on the relative values of CDFs the system is divided into clusters as described

in [10]. Since there are multiple critical lines, the clusters de�ned for each line must be

superposed on top of each other, and the intersections of the clusters constitutes the �rst cut

design. The empirical results show that for a system of NB = 100, three critical lines result

in around 20 clusters. Given that the desired number of clusters is �ve, the search space of

the problem is reduced from 2:52� 1066 to 3:05� 1010.

Although the size of � is reduced by the orders of magnitude, the problem is still not

manageable from the optimization point of view. Suppose 10,000 samples are selected ran-

domly from � and serve as the sample set, �0 for applying the search based method. The

probability of the optimum solution from � being contained in this sample space is given by

Prob(�? 2 �0) = 1�
�
1�

1

3:05� 1010

�10;000
= 3:28� 10�7 (40)

which is less than unlikely.

Still the sample size must be further reduced to a manageable size before applying any

search based method to Eq. 6. Fortunately many of 3:05� 1010 are infeasible as geograph-

ically distant clusters after the �rst cut design cannot be combined to be included in the

sample set. Some more topological characteristics allows further reduction of the size of

the sample set. Even though a generalization of exploiting the topological characteristics
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of the system may be made based on the recent development in various graph partitioning

methods, we employ more heuristic approach to reducing the sample set. For instance, there

are some rules of thumb, such as not allowing the clustering near the critical lines, that

signi�cantly limit the possible designs to be include in the sample set. We claim without an

analytical proof that the heuristic approach by an experienced system operator allows for

the sample set containing around 1,000 design from which at least 50 designs belong in the

top 100 designs of the original search space for NB � 100, NTR � 200 and Nz � 10. Thus,

by and large the complexity of �nding the optimal solution to the problem in Eq. (6) is

reduced from the search space of j�j � 2:5� 1066 to the sample space of j�0
j � 1; 000.

A. Application of Ordinal Optimization Method

Here we examine the optimization problem in Eq. (6) from the perspective of the ordinal

optimization (OO) method. In dealing with the search based methods applied to optimiza-

tion problems, the (OO) method has been proven very e�ective.[3] The strength of the OO

method is in considerable savings in computational time when dealing with optimization

problems with large search spaces and high uncertainty.

The basic idea of the OO method is the softening of the objective of �nding the optimum

to �nding any design belonging to the \good enough" subset. For example, the good enough

subset can be de�ned as the top-n% of the design space. The softening of the objective

allows for working only in the much reduced selected subset with the expectation for a

reasonable number of designs belonging to the good enough set at a high con�dence. If

the performance of each design is measured without any noise, the original optimization

problem is transformed into the problem of selecting the design with the smallest evaluated

performance belonging to the selected subset.[3] When the performance estimate is noisy, it

becomes necessary to include more than one design in order to secure with higher con�dence

a certain degree of matching, or alignment, between the selected subset and the good enough

subset.[5]

Suppose that the size of the search space containing all possible designs is in the order

of 1010 as in the case with our problem. By goal softening principle we limit our goals to

picking any of the top 5% designs. Consider a set consisting of 1,000 random samples from

the search space. Then, the probability of retaining at least one of the top 5% designs in
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this sample space is given by

Prob (G \ �0
6= ;) = 1� (1� 0:05)1;000 � 1 (41)

where G and �0 denote the set of the top 5% designs and the sample space respectively.

Similar to the idea of taking an exit poll from a limited number of electoral votes, if the

designs in the sample space are chosen completely random, then we may assume that �0 of

the size 1,000 will more or less include 50 designs that belong to G. We can thus reduce

the problem from �nding any of designs that belongs to the set of top 5% designs from the

search space of size 1010 to �nding any designs that belong to top 50 designs from the sample

space of size 1,000. The reduction of complexity is, indeed, quite considerable.

Let G0 denote the set consisting the top 50 design contained in the sample space, �0. Now

consider the selected subset consisting s designs chosen randomly from �0. We are interested

in necessary s such that the alignment probability de�ned as Prob (jG \ Sj � k) � PA where

k and PA are de�ned depending on the purpose. For example, let k = 3 and PA = 90%. For

the parameters given the equation for computing the alignment probability is given as [3]

Prob (jG \ Sj � 3) =
50X
i=3

2
64 50

i

3
75
2
64 1; 000� 50

jSj � i

3
75

2
64 1; 000

jSj

3
75

� 0:90 (42)

Using Eq. (42) we deduce that the selected subset requires to have at least 102 designs in

order to have at least 3 of them belong to the top 50 designs of the sample space.

This translates a tremendous savings in computational time since a fairly accurate com-

parison of approximately 100 designs will result in picking a design that is one of the top 50

design of the sample space or of the top 5% of the entire search space.

To summarize the application of the OO method allows for a considerable savings of

computational time in obtaining an acceptable solution to optimization problem through

search based methods while the method itself involves only the following simple steps [5]

1. selecting the sample set of size N , j�0
j = N

2. de�ning the goals: # of good designs, g, # of good design alignment in the selected

subset, k and the probability of alignment, PA
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3. determining the subset size, s and selection rules that meets the goals

4. constructing the selected subset, S

5. comparing the designs in the selected subset

Before describing the method for accurate comparison of designs, we point out that the

goal stated at the beginning is not a very impressive one since given that the size of the

search space is in the order of 1010, the top 5% design include the designs that is as far as

5� 108 away from the true optimum.

For the optimization problem at hand, however, the top 50 designs in the sample space

consisting of 1,000 are much better representatives than the top 5% of the entire search

space. As discussed earlier this is because the designs in the sample space are not picked

randomly but through a rigorous testing of the performance based on the �rst criterion for

good cluster design. It is stated earlier that if the clusters are de�ned based on the CDFs,

and if the importance of each criterion is de�ned such that �rst criterion is weighed orders of

magnitude higher than the other two, then the designs based on the CDFs are ranked much

closer to the true optimum than the rest of the possible designs. It may not be possible

to accurately quantify how much better are the top 50 designs in the sample space to the

the top 5% of the entire search space. However, it would not be surprising to �nd that the

sample space contains at least 50 of the top 100 cluster designs from the search space if the

clusters are de�ned based on CDFs respect to the critical transmission lines identi�ed by an

experienced operator relying on many heuristic tools.

B. Fairly Accurate Comparison of Designs in the Selected Subset

The ranking of each design alternative requires evaluating the sample performance. Ac-

cording to three criteria for good cluster design, L(�; �[k]; k) is de�ned as a function consisting

a linear combination of three parts, namely LD(i;j)(�), LQGi
(�), and L�QGi

(�) as shown in Eq.

(12). Assume that the relative weights, �, are chosen so that

�D(i;j)LD(i;j)(�)� ��QGi
L�QGi

(�)� �QGi
LQGi

(�) (43)

Then we claim without proof that only LQGi
(�) and L�QGi

(�) are relevant for evaluating the

designs in the selected subset. The reason for this is because when the designs are chosen to

be included in the selected subset, LD(i;j)(�) is already used for comparison purposes. The
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designs in the selected set are assumed to have about the same L�QGi
(�) compared to the

others in the same set for otherwise the selected subset can be further reduced due to Ineq.

(43).

Consider the modi�ed sample performance, L0(�; �[k]; k). We write
PT

k=0 L
0(�) as

TX
k=0

L0(�; �[k]; k) =

TX
k=0

2
4 min
Qzj

[k]

X
zj

Czj (Qzj
[k]; k) (44)

+ min
�QGi

;Gi2Z[k]

X
Gi

CGi
(�QGi

[k]; k)

#

subject to the load ow constraints at each hour k

X
zj

Qzj
[k] =

X
Di

QDi
[k] (45)

X
Gi2Z[k]

�QGi
[k] = 0 (46)

the transmission line ow limit constraints1

jFl0 [k]j =

�����
X
zi

Hl0zi
[k]Qzi

[k]�
X
Di

Hl0Di
QDi

[k]

����� � Fmax

l0
[k] (47)

jFl[k] + �Fl[k]j = jHlGi
[k] (QGi

[k] + �QGi
[k]) +HlDi

QDi
[k]j

� Fmax

l
[k]

(48)

and the generation limit constraints

0 � Qzj
[k] �

X
Gi2zj

Qmax

Gi
[k] (49)

0 � QGi
[k] + �QGi

[k] � Qmax

Gi
[k] (50)

Under the formulation presented above the uncertainty in the system is incorporated by

considering

1. Load uncertainty

substitute Eq. (7) into QDi
in Eqs. (45), (47) and (48)

2. Generation bid uncertainty

substitute Eqs. (8) and (9) into
dCGi
dQGi

in Eq. (44)

1
l
prime denotes the lines only on the congestion cluster interfaces.
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3. Equipment status uncertainty

substitute 0 for Fmax
l [k] (or Qmax

Gi
[k]) if the transmission line l (or the generator Gi) is

in the \down" state

With Eqs. (44) - (50) we can rewrite the cluster design problem as the stochastic opti-

mization problem given by

�? = argmin
�2�

TX
k=0

J 0(�; k) � E

"
TX
k=0

L0(�; �[k]; k)

#
(51)

The expectation in Eq. (51) can be evaluated using the search based method (the Monte

Carlo method) by

E

"
TX
k=0

L0(�; �[k]; k)

#
=

1

Niter

NiterX
i=1

TX
k=0

L0(�; �i[k]; k) (52)

where �i represents the ith sample of the uncertainty.[3]

It is recognized that because of the uncertainty is modeled using either a general version of

a discrete time random walk or the transient Markovian chain, the number of probabilistic

states that need to be evaluated grow exponentially with time k in order to compute Eq. (44).

This is quite limiting in applying the search based method. Therefore, some modi�cations

are necessary in order to simplify the optimization to be manageable. One such modi�cation

is to work with the steady state probability rather than the transient probability.

B.1 Steady State Approximation of Uncertainty

For representing the uncertainty in load and the uncertainty in generation bid through

steady state probability, the models described in [11] is useful. First, for modeling the load

the identi�ed are the several basic load patterns: typically peak load pattern, normal load

pattern and o�-peak pattern as shown in Figure 3, and the range of system load levels given

in discretized steps of hMW starting from Q0
D MW, i.e. Qtot

D (k) = Q0
D = kh as shown in

Figure 4. Then, in the model if the total system load is larger than Q[4], the load distribution

follows that of the peak ; if system load falls between Q[2] and Q[3], it follows the normal

load distribution; and if system load is less than Q[1], o�-peak load pattern is used to depict

the load distribution. If the system load is either between Q[1] and Q[2] or Q[3] and Q[4] the

appropriate patterns are meshed to create typical individual load pattern. This process can
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failures is given as

Prob(3 line outage) =

2
64 NTR

3

3
75 �30 [1]�NTR�3

1 [1] (56)

IV. Example

We illustrate the approach described in the paper using a simple test case shown in Figure

5. The system consists of 118 buses: 54 generators and 64 loads, and 186 transmission lines
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Fig. 5. One line diagram of 118 bus (power ow test case) system

interconnecting the entire system; i.e. NB = 118 (NG = 54 and ND = 64), and NTR = 186.

The congestion cluster pricing method is to be implemented on the 118 bus system for the

cluster boundaries de�ned at k = 0 for a season consisting of 90 days (T = 2160 (hours)).

The maximum number of clusters allowed is limited to , i.e. Nz = 15. Thus, the maximum
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size of the search space is 1:37� 10121 computed by

j�j = 15(118�15)

= 1:37� 10121
(57)

which is an astronomical �gure.

For each load in the system, three types of load patterns are assigned: peak, o�-peak

and normal. Instead of introducing the uncertainty in the load as described in Eq. (53)

each pattern is arranged to increase by a constant step at the beginning of the month

(k = 720, 1440). An example of a load is shown in Figure 6. The generator marginal

QDi

day 61-90
day 31-60
day 0 - 30

k = 0 6 12 18

normal

peak

off-peak

24

Fig. 6. Demand pattern for load i in the system

supply bid is assumed to be a linear function of QGi
, i.e. MC (QGi

) = 2aGi
QGi

, with no

uncertainty. Further, each generator in the system is assumed to be operational without

outages throughout the season, thus no uncertainty in the status of generator. The only

uncertainty considered in the system is related to the status of transmission line. The

transmission lines in the system may experience outages with the failure rate of � = 5�10�4

and the repair rate of � = 0:5. For example, the probability associated with no transmission

line failure is given by

Prob(no line outage) =

2
64 NTR

0

3
75 �00 [1]�NTR

1 [1]

= 83%

(58)

Based on the system parameters it is determined that there are four critical lines in the

system, namely the transmission lines between buses 30 and 38, between buses 59 and 63,

between buses 70 and 71, and between buses 94 and 100. The critical lines are associated
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with the lines likely to be congested by reaching the transfer limits. Some of these lines may

be congested at the same time or at di�erent times reecting the stress being applied to the

system in more than one possible way at di�erent times throughout the season.

The �rst cut cluster design is performed for each of these critical lines based on CDFs.

For example, Figure 7 shows the cluster boundaries de�ned based on CDF computed for

transmission line between buses 30 and 38. Once the �rst cut designs are determined, the
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Fig. 7. First cut cluster design for line between buses 30 and 38

clusters are superposed on top of each other to create the clusters over the entire season.

The resulting number of clusters after the superposition is found to be 18. Therefore, the

maximum size of the sample space is reduced to a measly 3,375 computed by

j�0
j = 15(18�15)

= 3; 375
(59)

The size of the actual sample space is even smaller once the clearly inferior cluster designs (or

infeasible cluster designs) are eliminated from the initial sample space resulting in j�0
j � 300.

From this sample space, 30 cluster designs are picked randomly to form a selected subset.

The alignment probability for at least 3 matches in the selected subset of 30 designs for the

top 50 designs is then, approximately 91% computed by

Prob (jG \ Sj � 3) =
30X
i=3

2
64 50

i

3
75
2
64 300� 50

30� i

3
75

2
64 300

30

3
75

= 90:91% (60)
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Finally, the performance function is estimated for each of these 30 designs in the selected

subset, S. The uncertainty in the status of transmission line is not considered at this

estimation step. Table I summaries the estimated sample performance. As shown in the

Design �1 �2 �3 �4 �5 �6

L0(�) 189.283 185.457 188.195 189.283 185.678 187.644

Design �7 �8 �9 �10 �11 �12

L0(�) 185.841 187.121 184.424 185.407 185.436 185.709

Design �13 �14 �15 �16 �17 �18

L0(�) 184.205 185.430 187.070 187.425 185.733 187.447

Design �19 �20 �21 �22 �23 �24

L0(�) 185.736 185.687 188.195 184.481 184.434 184.478

Design �25 �26 �27 �28 �29 �30

L0(�) 184.440 184.470 187.277 184.727 185.687 184.440

Design �31 �32 �33 �34 �35

L0(�) 187.978 184.243 186.929 185.457 188.195

TABLE I

Estimated sample performance for �i 2 S

table, three cluster designs with the smallest evaluated performance are �9, �13 and �32.

Tables II, III and IV describe how the clusters are de�ned for each of these three designs.

For �13 we incorporate the uncertainty in status of transmission lines into the estimation

of the sample performance. It turns out that the probability associated with multiple line

outages is very small; i.e. less than 1.6%. Thus, we consider only the single line outages.

The newly estimated sample performance is given as

E

"
TX
k=0

L0(�9; �[k]; k)

#
= 183:012 (61)

As expected some slight correction is made to the earlier estimation of the sample performance.2

2This system exhibits a somewhat degenerate feature of the reduced system-wide generation cost with some of the

lines taken out. This implies that the system operator may reduce the system congestion by cleverly controlling the

existing resources.
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Cluster # Bus #

1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,117

2 25,26,27,28,29,31,32,114,115

3 16,17,18,19,30,113

4 20,21,22,23,24

5 37,38,39,40

6 33,34,35,36

7 79,80,98,99,100,101,102,103,104,105

106,107,108,109,110,111,112

8 43,44,45,46,47,48,49

9 41,42

10 50,51,52,53,54,55,56,57,58

11 59,60,61,62,66,67

12 63,64,65

13 77,78,82,83,84,85,86,87,88,89,90,91

92,93,94,95,96,97

14 68,69,70,74,75,76,81,116,118

15 71,72,73

TABLE II

Individual bus cluster affiliation for �9

V. Conclusion

In this paper a practical approach to implementing the congestion cluster pricing method

have been introduced. The congestion cluster pricing method is a viable congestion man-

agement system (CMS) in operation of electric power system. The CMS plays a signi�cant

role in operating the energy market since it limits certain system users from participating,

in out of merit order, in the presence of congestion.

Of the currently available market-based CMS, the cluster-based CMS is preferred because

it is much more accommodating to implementing bilateral transactions by providing trans-

parent information on the status of transmission (system) congestion. However, there are

some disadvantages to the cluster-based CMS related to the increase in cost of system-wide

generation cost in short term. These disadvantages may be overcome somewhat by employing

the congestion cluster pricing method.
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Cluster # Bus #

1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,117

2 27,28,29,31,32,114,115

3 16,17,18,19,25,26,30,113

4 20,21,22,23,24

5 37,38,39,40,41,42

6 33,34,35,36,43,44

7 103,104,105,106,107,108,109,110,111,112

8 79,80,98,99,100,101,102

9 77,78,82,83,84,85,86,87,88,89,90,91,92,93

94,95,96,97

10 50,51,52,53,54,55,56,57,58

11 59,60,61,62,66,67

12 63,64,65

13 45,46,47,48,49

14 68,69,70,74,75,76,81,116,118

15 71,72,73

TABLE III

Individual bus cluster affiliation for �13

We have presented the formulation for the implementation of the congestion cluster pricing

method as a stochastic optimization problem in which the minimum desired criteria for

the method is translated into the performance function. The minimum criteria may be

summarized as

1. the transaction between any buses within the same cluster have little impact of power

ows on the congested transmission lines

2. the energy cost computed after relieving inter-cluster congestion is relatively small

3. the additional energy cost necessary for relieving intra-cluster congestion is relatively

small

After introducing the uncertainty in the system, we have discussed some heuristic tech-

niques to �nding the solution to the newly formulated optimization problem. Given that

the search based method is preferred for solving the problem, these heuristic techniques are

particularly important because of the high degree of the stochastic nature and because of the
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Cluster # Bus #

1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,117

2 25,26,27,28,29,31,32,114,115

3 16,17,18,19,30,113

4 20,21,22,23,24

5 103,104,105,106,107,108,109,110,111,112

6 33,34,35,36,37,38,39,40

7 79,80,98,99,100,101,102

8 41,42,43,44,45,46,47,48,49

9 83,84,85,86,87,88,89,90,91,92

10 50,51,52,53,54,55,56,57,58

11 59,60,61,62,66,67

12 63,64,65

13 77,78,82,93,94,95,96,97

14 68,69,70,74,75,76,81,116,118

15 71,72,73

TABLE IV

Individual bus cluster affiliation for �32

large size of the search space. The ordinal optimization (OO) principles are used to provide

some justi�cations to the techniques.

The basic idea behind the OO method is the softening of the objective of �nding the

optimum to �nding any design belonging to the \good enough" subset. The softening of the

objective allows for working only in the much reduced selected subset with the expectation

for a reasonable number of designs belonging to the good enough set at a high con�dence.

The OO principles are believed to be quite useful exploring the presented optimization

problem further. The natural next step may be employing the OO method to evaluate

the sample performances only for ranking various cluster design alternatives rather than

for calculating the actual performance measure for a particular design. The Monte Carlo

formulation given for evaluating the sample performance may, then be solved directly without

much concerns for the large number of iteration. The coeÆcient of variation needs to be

computed from the ordinal optimization perspective if the Monte Carlo method is used so
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that some con�dence bound can be estimated for the accurate alignment probability analysis.

Finally, the some sophisticated numerical techniques such as the importance sampling may

also be worthwhile exploring as many uncertainties in the system presented in the paper

have very low probabilities but high impact.
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