About

Download the prospectus

Mobility is changing in response to emerging technologies, disruptive business models, evolving demographics and consumer demands, as well as government policy and global sustainability goals. While the future of mobility is likely to look different from today, there is great uncertainty about how mobility systems will evolve in different parts of the world. Current mobility systems are highly heterogeneous and driven by local factors including pollution, congestion, population density, economic growth, infrastructure provision, energy security, and land use.

The Mobility Systems Center, an MIT Energy Initiative Low-Carbon Energy Center, brings together MIT’s extensive expertise in mobility research to understand current and future trends in global passenger and freight mobility. Approaching mobility from a socio-technical perspective, we identify key challenges, understand potential trends, and analyze the societal and environmental impact of new mobility solutions. Through developing, maintaining, and applying a set of state-of-the-art scientific tools for the mobility sector, the Center aims to assess future mobility transformations from a technological, economic, environmental, and socio-political perspective.

The Center continues the multidisciplinary research started under MITEI’s Mobility of the Future study, which gave primary attention to the U.S. and China, light-duty passenger vehicles with four wheels, urban mobility, electrification, and greenhouse gas policies. The Mobility Systems Center has a broader scope and is designed to evolve in response to the interests of its members and emerging challenges in mobility systems.


The mobility sector is undergoing significant transformations; understanding the scale and scope of these transformations requires the Mobility Systems Center’s multidisciplinary approach, which brings together data scientists, engineers, economists, and environmental scientists.Professor William H. Green, Co-Director


The ultimate goal of mobility is to enable access to goods, services, and people; MITEI’s Mobility Systems Center takes a systems approach to realizing this goal.
Professor Jinhua Zhao, Co-Director


Mobility is becoming digital. This will change the way we think and interact with our mobility needs.Professor Sanjay Sarma, Founding Co-Director


Goals and approach

The Mobility Systems Center analyzes trends in global passenger and freight mobility systems to guide them towards an efficient and sustainable future. Constructed as an industry-sponsored consortium, the Center brings together the diverse expertise of MIT faculty with the on-the-ground knowledge of industry partners. Funded by consortium members, MIT faculty evaluate the economic, social, and environmental impacts of emerging trends in mobility using state-of-the-art methods, including big data, machine learning, chemistry, engineering, economics, urban and regional planning, and business strategy. The ultimate goal of the Center is to provide insights and analyses that can guide member companies in developing and executing mobility business strategies that support sustainable economic growth.

Research themes

The Mobility Systems Center brings together academia and industry to adopt a multidisciplinary and pragmatic approach to the study of mobility. Industry consortium members guide the Center leadership in identifying pressing topics that lead to insights into current and future trends in global passenger and freight ground transportation from technological, economic, environmental, political, and social perspectives. For the period 2019-2022, the Center’s research is focused on the following four themes:

Mobility evolution in high-growth countries

The growth of the middle class in high-growth developing countries will be the primary driver of future demand for mobility of people and goods. We outline the unique mobility context of these markets as well as analyze the potential impacts of policy and technology interventions to combat local challenges of congestion, road safety, and air pollution without curtailing growing accessibility.

Freight ground transportation

Ground transportation of freight has a similar global energy demand to that of all light-duty vehicles. Freight transportation is expected to continue to grow. We analyze operational and technological approaches for improving economic and environmental efficiency of goods transport. Our analyses include long-haul freight by road and rail and urban delivery of goods.

Clean fuels and propulsion systems

Various alternatives for clean fuels and propulsion systems can help mitigate greenhouse gas emissions as well as local air pollutants and their health and mortality consequences. We conduct techno-economic environmental analyses to assess tradeoffs in performance, cost, and environmental footprint of battery electric systems, fuel cell propulsion systems, and other clean burning fuels with emission control systems.

Disruptive technologies and their supporting infrastructure

New business models and technologies are disrupting current mobility systems and shaping how they will evolve in the future. We assess how mobility-as-a-service, mobility-on-demand, and the vehicle sharing economy will continue to change consumer behavior and the transportation value chain. We also tackle uncertainties surrounding connected and autonomous vehicles, particularly the role of supporting infrastructure and issues of cybersecurity.

The Mobility Systems Center is building on decades of research at MIT in the transportation sector, including MITEI’s recent Mobility of the Future study focused on the economics, global and municipal-level policies, and consumer behaviors around light-duty vehicles and urban mobility. Learn more about our research projects.