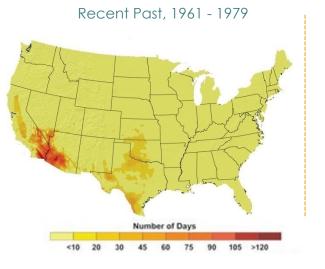
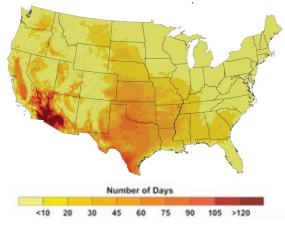


www.phius.org

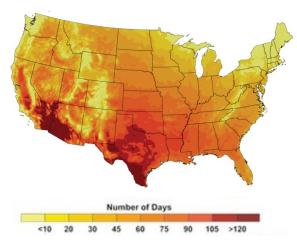
PASSIVE BUILDING CASE STUDIES LESSONS LEARNED


PASSIVE BUILDING

CONTEXT & TRENDS PRINCIPLES & STANDARDS LESSONS LEARNED

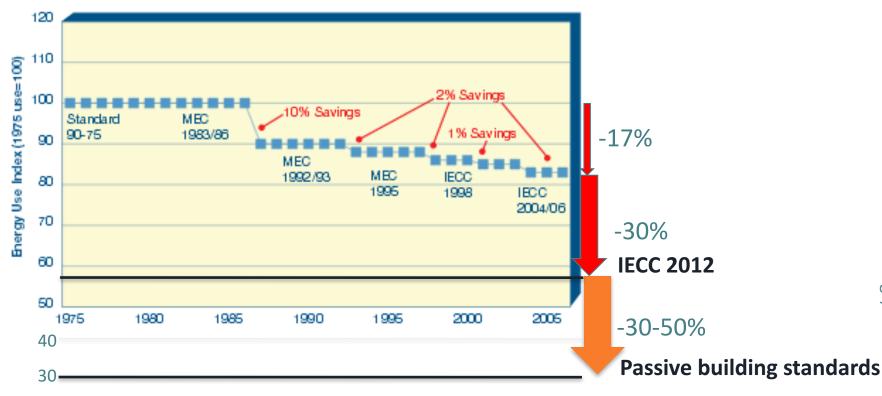

NEXT FRONTIERS

OUR CLIMATE IS CHANGING


The number of days in which the temperature exceeds 100°F/ 38°C by late this century

Lower Emissions Scenario, 2080-2099

Higher Emissions Scenario, 2080-2099



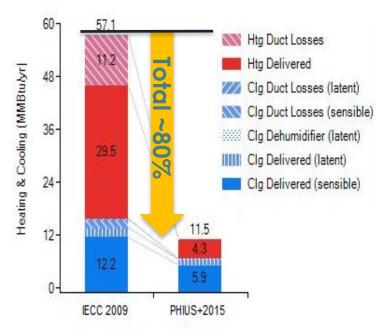
temperature map images: U.S. Global Change Research Program

WHERE TODAY'S US ENERGY CODES ARE -DEVELOPMENT SINCE THE **ENERGY CRISIS**

Figure 20

Residential Energy Code Stringency (Measured on a Code-to-Code Basis) End-uses addressed by the IECC: heating, cooling, domestic hot water

PHIUS+2015/SOURCE ZERO NEXT STEP ON: DEPARTMENT OF ENERGY PERFORMANCE STAIRCASE

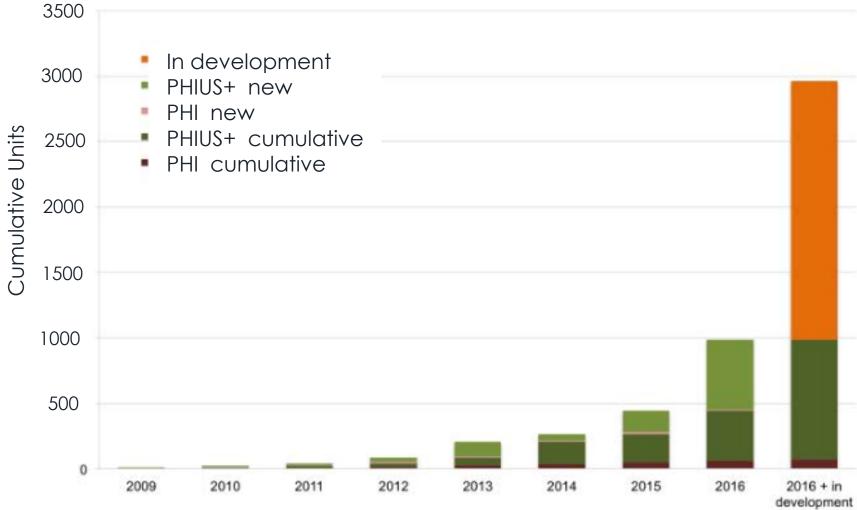

						Source Zero Renew- able Energy System
					Balanced Ventilation HRV/ERV	Balanced Ventilation HRV/ERV
				SOLAR READY Depends on climate	SOLAR READY ALWAYS	SOLAR READY ALWAYS
				Eff. Comps. & H2O Distrib	Eff. Comps. & H₂O Distrib	Eff. Comps. & H ₂ O Distrib
				Air Pacakge	Air Pacakge	Air Pacakge
				Ducts in Condit. Space	Ducts in Condit. Space	Ducts in Condit. Space
		HVAC QI w/WHV	HVAC QI w/WHV	HVAC QI w/WHV	Micro-load HVAC QI	Micro-load HVAC QI
		Water Management	Water Management	Water Management	Water Management	Water Management
		Independent Verification	Independent Verification	Independent Verification	Independent Verification	Independent Verification
IECC 2009 Enclosure	IECC 2012 Enclosure	IECC 2009 Enclosure	IECC 2012 Enclosure	IECC 2012/15 Encl./ES Win.	Ultra-Efficient Enclosure	Ultra-Efficient Enclosure
HERS 85-90	HERS 70-80	HERS 65-75	HERS 55-65	HERS 48-55	HERS 35-45	HERS < 0
IECC 2009	IECC 2012	ENERGY STAR v3	ENERGY STAR v3.1	ZERO ZERH	PHIUS PHIUS+	+C PHIUS+ SourceZero

©2018 House Institute US | PHIUS 5

PHIUS+2015 REDUCTION VS USA CODE

Table 16. All-Points Median Percentage Reductions From Benchmark

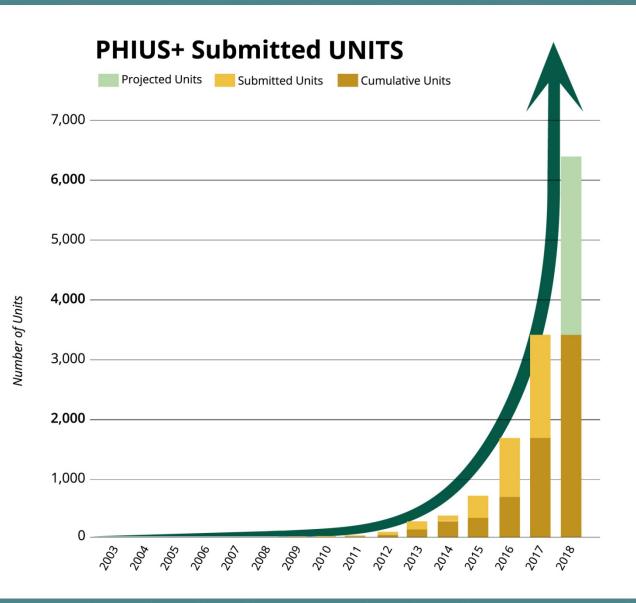
	Proposed Standards (With Duct Loss in Benchmark)	Proposed Standards (Excluding Duct Loss)	PV Start Points (Excluding Duct Loss)
Heating Demand	~86	77	68
Cooling Demand	~46	29	35
Heating Capacity	77	77	74
Cooling Capacity	69	69	67


WITHOUT ADDING SOLAR PV PASSIVE STANDARDS PERFORM TODAY AT 80% OF THE 2030 CHALLENGE

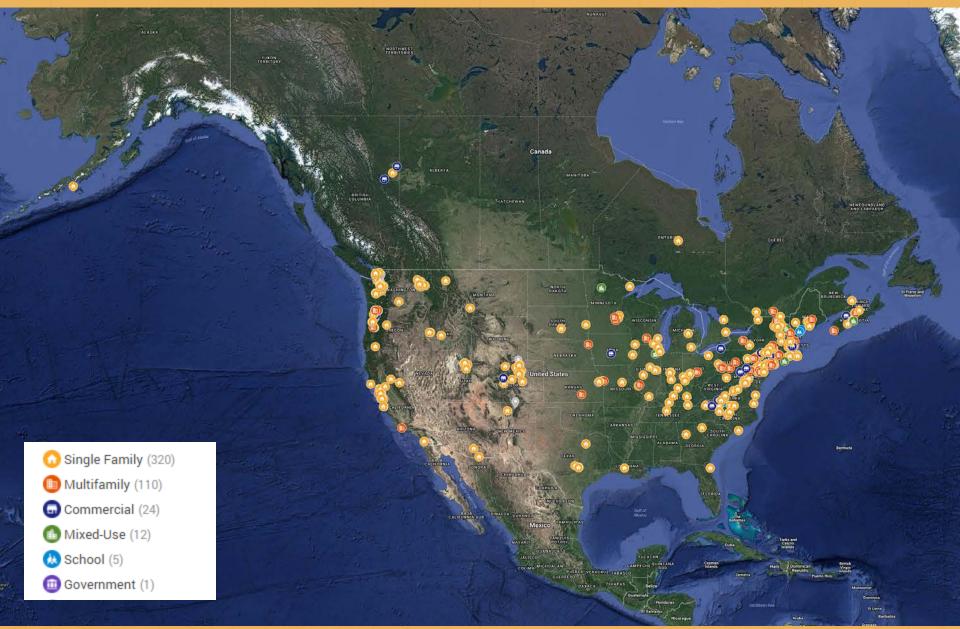
	Available in Average Average Average 2030 Challenge Site EUI Targets (
Primary Space / Building Type ²	Target Finder ³	Source EUI ⁴ (kBtu/Sq.Ft./Yr)	Percent Electric	Site EUI ⁴ (kBtu/Sq.Ft./Yr)	50% Target	60% Target	0% Target 70% Target 80% Target 9		90% Targe
Residential Space / Building Type ^{6, 7}		II		ļ	L	I			
Single-Family Detached		76.6	-	43.8	21.9	17.5	13.1	8.8	4.4
Single-Family Attached		70.7	78	43.7	21.9	17.5	13.1	8.7	4.4
Multi-Family, 2 to 4 units		93.2	1 21	58.2	29.1	23.3	17.5	11.6	5.8
Multi-Family, 5 or more units		99.4		49.5	24.8	19.8	14.9	9.9	5.0
Mobile Homes		153.2	20 20	73.4	36.7	29.4	22.0	14.7	7.3

Source: www.architecture2030.org

CERTIFICATION TRENDS IN NA: 95% of US certified m² = PHIUS+


Cumulative Units

© 2018 PHIUS


rce: www.pembina.org/pub/passive-house-repor

PASSIVE HOUSE US DATABASE

Source: www.phius.org

~500+ PROJECTS IN NORTH AMERICA

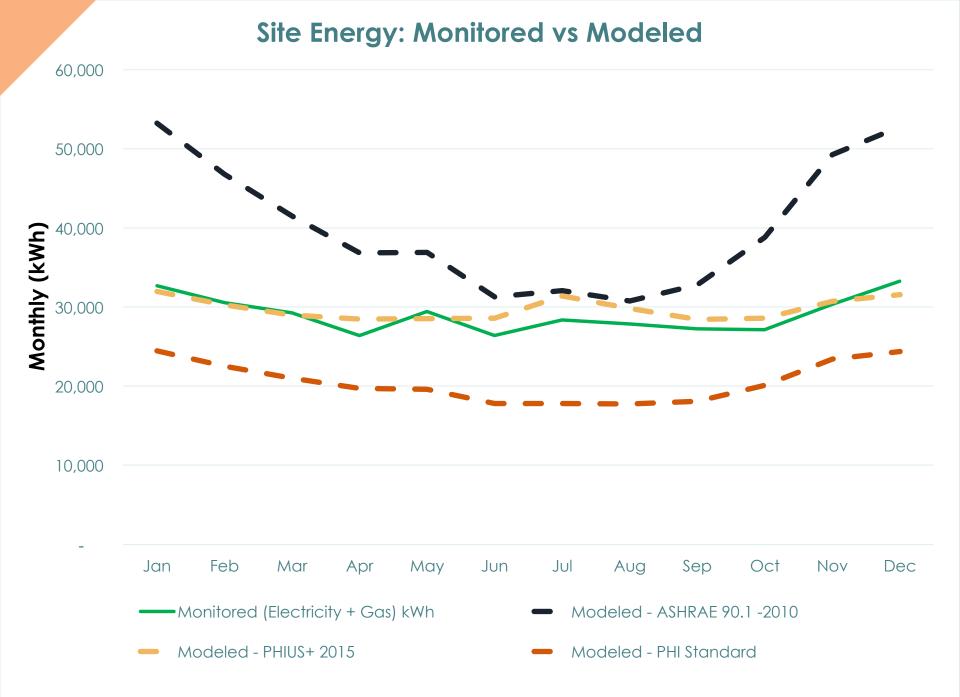
PROJECTS NATIONWIDE

80+ MULTIFAMILY SUBMITTED, PRE-CERTIFIED, CERTIFIED

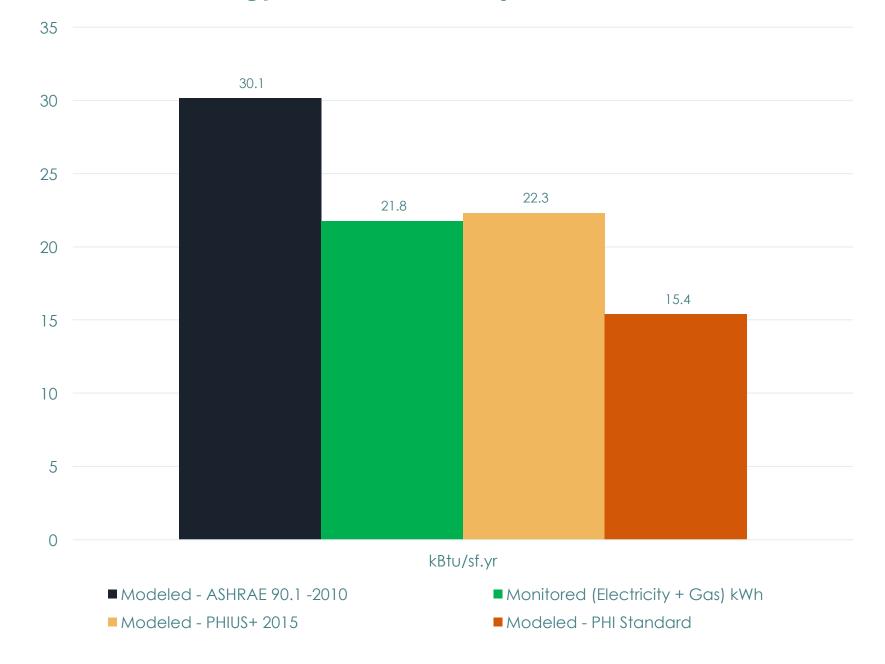
SITE EUIS OF 10-25 kBTU/ft².yr ~20-50% better than DOE's Zero Energy Home Program

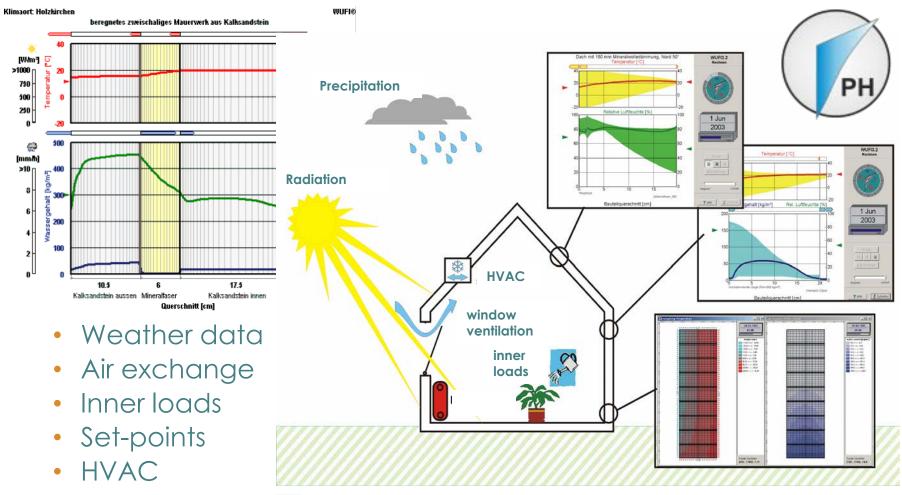
LEGISLATION & INCENTIVES

ORCHARDS AT ORENCO I+II, HILLSBORO OREGON



ELM PLACE, BURLINGTON VERMONT CHOM, PORTLAND MAINE




HILL CREST, PITTSBURGH PA

Site Energy: Monitored vs Adjusted Models

INTEGRATED DESIGN FROM COMPONENTS TO WHOLE BUILDING ENERGY BALANCE

PASSIVE BUILDING PRINCIPLES

PHIUS+ 2015

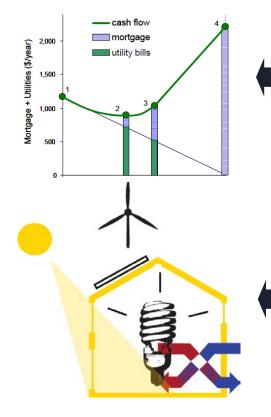
PASS/FAIL PERFORMANCE STANDARD

3 PERFORMANCE "PILLARS"

- 1. Space Conditioning
- 2. Source Energy
- 3. Air-Tightness

1 ADDITIONAL CERTIFICATION

1. PHIUS+ Source Zero

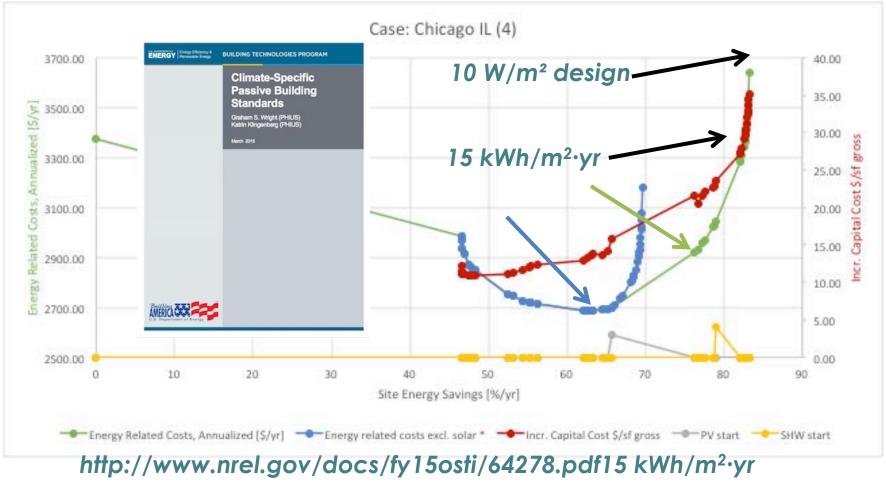

CLIMATE SPECIFIC STANDARDS: ONE SIZE DOES NOT FIT ALL

1. Only Heating (very HHD) 2. Only Heating (HHD) 3. Only Heating (MHD+LHD) 4. Heating and Cooling (very HHD+LCD) 5. Heating and Cooling (HHD+MCD) 6. Heating and Cooling (HHD+LCD) 7. Heating and Cooling (MHD+MCD) 8. Heating and Cooling (MHD+LCD) 9. Heating and Cooling (LHD+MCD) 10. Heating and Cooling (LHD+LCD) 11. Only Cooling (very HCD) 12. Only Cooling (HCD) 13. Only Cooling (LCD+MCD) 14. Cooling and Dehum (very HCD) 15. Cooling and Dehum (HCD) 16. Cooling and Dehum (LCD+MCD) 17. Heating, Cooling, Dehum

very HHD+LCD) HHD+LCD) MHD+LCD) HHD+LCD) (HD+LCD) (LHD+LCD) (LHD+LCD) (LHD+LCD) (CD) (Very HCD) (HCD) (LCD-MCD) hum Graph Courtesy of Global Buildings Performance Network

COST & CLIMATE OPTIMIZED

Climate Specific & Cost Optimal Standards

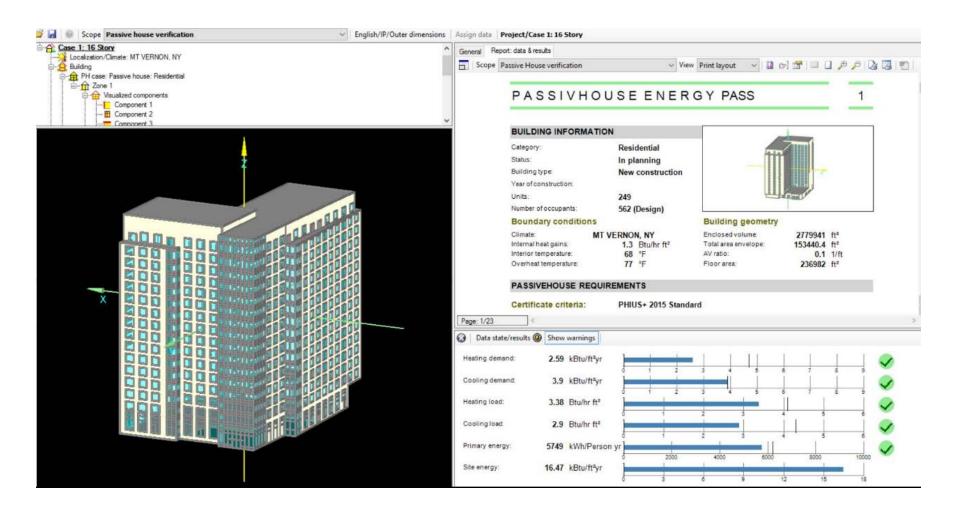

NREL BEopt optimizes upgrade package by climate

Standards defined as cost optimal/competitive sweetspot between conservation and generation **on the path to zero**

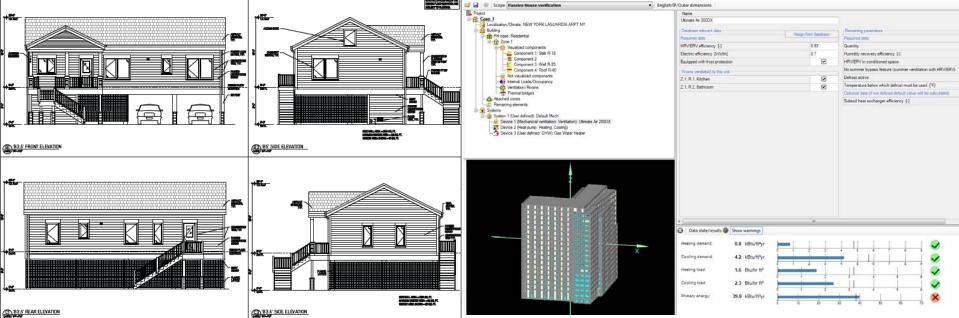
CERTIFICATION TARGETS

	PHIUS+ 2015
Annual Heat Demand (kBTU/ft².yr)	Varies by Climate
Annual Heating Load (BTU/ft².hr)	Varies by Climate
Annual Cooling Demand (kBTU/ft².yr)	Varies by Climate
Annual Cooling Load (BTU/ft².hr)	Varies by Climate
Airtightness	*0.05 cfm/ft ² (Based on Envelope Area)
Source Energy Factor (Residential)	6,200 kWh/person.yr

COST MATTERS AND HAS TO BE DEALT WITH -STANDARDS WERE SET JUST PAST THE ECONOMIC OPTIMUM



CLIMATE SPECIFIC METRICS OPTIMIZING THERMAL COMFORT AND COST

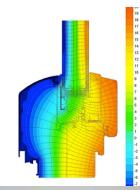

PASSIVE STANDARDS IN VARYING CLIMATES

State		New York City
NY OREGON	State NY	State
Zone	ASHRAE 2013 & Global Solar Radiation	NY
6	County Airport	ASHRAE 2013 & Global Solar Radiation
Annual heating demand kBtu/sf-iCFA.y	V ^r Chite Zone	(La Guardia)
	5	Zone 4A
Annual cooling demand kBtu/sf-iCFA.y	Annual nearing demand koto, si tor A.yr	
	5.8	Annual heating demand kBtu/sf-iCFA.yr 4.3
Peak heating load Btu/sf-iCFA.h	Annual cooling demand kBtu/sf-iCFA.yr 2.4	Annual cooling demand kBtu/sf-iCFA.yr
Peak cooling load Btu/sf-iCFA.h	Peak heating load Btu/sf-iCFA.h	4.9
3.7	4.7	Peak heating load Btu/sf-iCFA.h
A CAPELON MARK	Peak cooling load Btu/sf-iCFA.h	3.9
		Peak cooling load Btu/sf-iCFA.h 4.5
CALIFORNIA SUR SINATOA DI	ITANDE CONTRACTOR	

BUILDING TYPOLOGIES MATTER

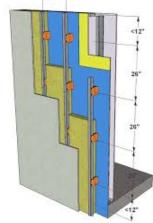
SMALL SINGLE FAMILY ONE STORY VS HI-RISE - SURFACE TO VOLUME RATIO VARIES, INTERNAL LOADS

R-50 WALLS


R-90 ROOF

R-50 SLAB

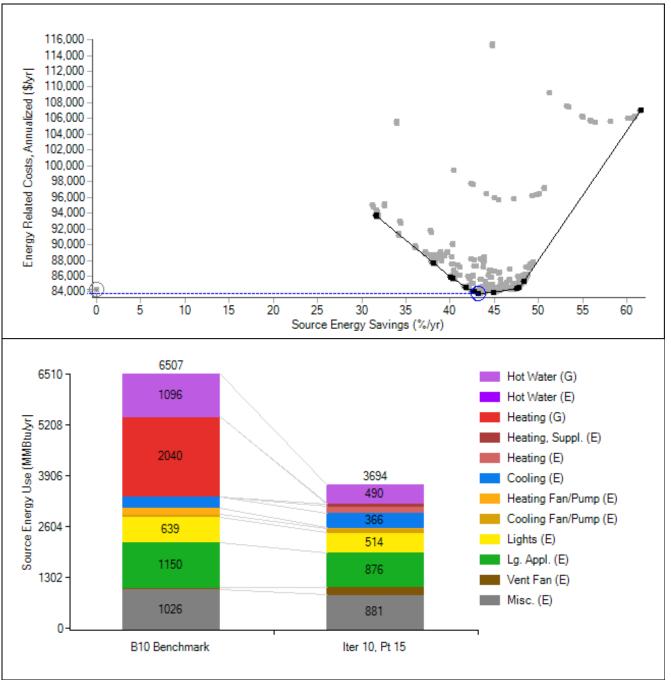
R-8 WINDOWS


R-25 WALLS R-40 ROOF R-20 SLAB R-5 WINDOWS

COMPONENTS ARE CLIMATE & TYPOLOGY SPECIFIC

. .

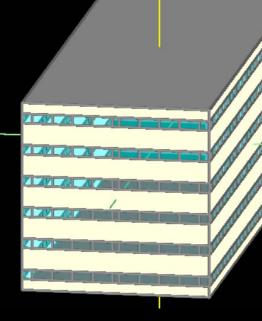
Product name: Alpen Cas ASHRAE/IECC /DOE North American South- Climate Zone facing	North, East, West - facing		PHIUS ssive House Institute US			Center-o A	f-glass		perti	es					
		Whole-wi	ndow installed U	-value		U	cog-V	alue				L	ш		
Climate specific recommen	dations:	W/m2K	BTU/hr.ft2.F		SHO	C T	W/m2	2K	BT	U/hr	.ft2.	F			
8		0.82	0.14			0.469	0	.478	3	3	0.08	34			
7		0.82	0.15			0.469	C	.482	2	-	0.08	35	ш		
6		0.83	0.15			0.460	0	190			0.05	26		-	_
5		0.83	0.15	Eind	& Coi	nnaro		ada							
4		0.83	0.15	FIIIU		iipare		luc	J W 3						
Marine North		0.84	0.15	PHIUS	Certified E	ata for Wi	ndows	: PH	IUS C	ertifi	ied V	Vindo	w Da	ta for	Des
Marine South		0.84	0.15	Availat	ole manu										
3		0.84	0.15	Alpen	ne manu	acturers	-					Psi-	Opaqu	e Grad	e (P
2 West		0.83	0.15	Cold Cha	in							Fran	ne-space	er grade	e is ba
2 East		0.83	0.15	нн		Frame Ma	terial (Fl	M)				singl	transmis e linear l parison o	heat los	s coe
	e n	1		Intus		FG - Fibergl	ass						e-space		
Alpen Casement 073		FR	AME	Kolbe Marvin		VL - Vinyl WD - Wood						PO (Btu/	h.ft.F1	Fra Gra	ime-S ide
	Fran	ne height	U-fram	Thermote	ch	PC - Unplas		ilyvinyl	Chloride	e (uPV	(C)	<=0.	· ·	A+	
	mm	in	W/m2K B	Veka		Al - Aluminu	m					<=0.	110	A+	
Head	72	2.82	1.12	Wasco		AW - Alumin	um Clad	Wood				<=0.	155	в	
Sill	72	2.82	1.12	Zola								<=0.		С	
Left	72	2.82	1.12	Download	able datashe	ata (ndf)	d thore i	files (in) for	aaab	liatir	>0.2	00	D	
Right	72	2.82	1 .12		ndations by		u mermi	mes (.	ap) for	each	กรนกรุ	9			
Valid through February 201	.6			Climate zo											
									South	- Fac	ing			North,	Eas
					Model	Glazing	FM	PO	8 7	6 5	4 4C	3C 3	2B 2A	8 7	6 5
				Alpen	525-SH Casement	108	FG	в							

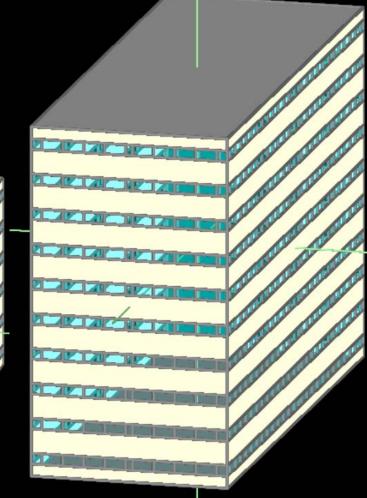

low Data for Designers & Builders

•		. or obad
Chain	Frame Material (FM) FG - Fiberglass	Frame-space heat transmisingle linear comparison frame-space
•	VL - Vinyl	PO
in	WD - Wood	[Btu/h.ft.F]
notech	PC - Unplasticized Polyvinyl Chloride (uPVC)	<=0.065
	Al - Aluminum	<=0.110
:0	AW - Aluminum Clad Wood	<=0.155
		<=0.200

acer grade is based on combining the frame mission and the edge-of glass effect into a ar heat loss coefficient. This provides a basis for n of frames of different widths and different cer combinations.

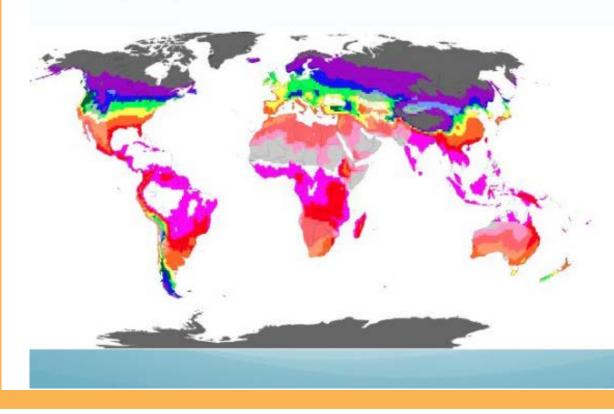
0	Frame-Spacer
tu/h.ft.F]	Grade
0.065	A+
0.110	A+
0.155	В
0.200	С
.200	D


					Sc	outl	h - F	Fac	ing	1			N	orth	1, E	ast,	W	est	- Fa	ici	ng			
	Model	Glazing	FM	PO	8	7	6	5	4	4C 3C	3	2B 2A	8	7	6	5	4	4C	3C	3	2B 2	A Datas	heet	thr
Alpen	525-SH Casement	108	FG	в																		datas	heet	.zip
Alpen	525-S 5L Casement	200	FG	в																		datas	heet	<u>.zi</u>
Alpen	525-S Casement 5S-L2	17	FG	в								2 2									Ø 8	datas	heet	.zij
Alpen	525-S Fixed HP 5S-H	108	FG	в																		datas	heet	.zij
Alpen	525-S Fixed HP 5S-I	109	EG	в																		datas	heet	zir



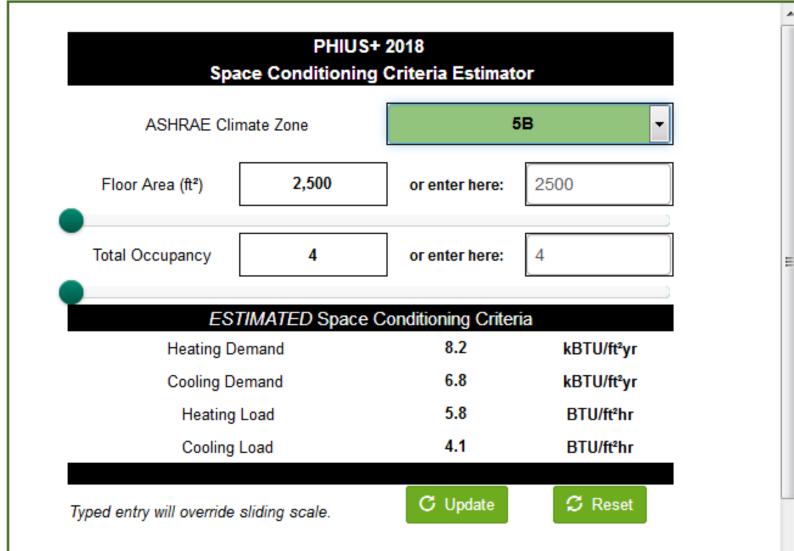
OPTIMIUM LEVELS BASED ON BUILDING SIZE AND OCCUPANT DENSITY (15 scenarios)

111



Global Climate Zones – ASHRAE Standard 169-2013

Key Parameters:

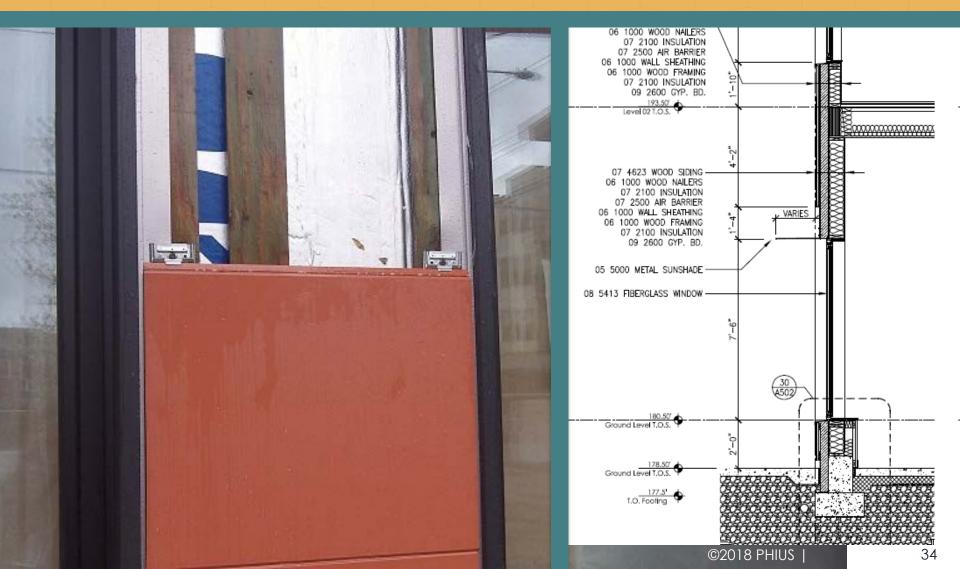

 Heating/Cooling Degree days using Max/Min daily temperatures

Annual precipitation

PHIUS+2018 PILOT

Ŧ

PHIUS+2018 PILOT


PHIUS+ 2018

Space Conditioning Criteria Estimator

ASHRAE Clir	mate Zone	5	iB 🔹
Floor Area (ft²)	100,000	or enter here:	100000
Total Occupancy	200	or enter here:	200
ES	TIMATED Space C	onditioning Criter	ia
Heating D	emand	2.4	kBTU/ft²yr
Cooling De	emand	5.2	kBTU/ft²yr
Heating	Load	2.5	BTU/ft ² hr
Cooling	Load	2.2	BTU/ft²hr
Typed entry will override	sliding scale.	C Update	${\cal S}$ Reset

 $\overline{\mathbf{v}}$

MUTIFAMILY PROJECT EXTERIOR FOAM AND CLADDING IN OREGON



UPTOWNLOFTS PA

Exterior foam Polyisocyanurate foil-faced exterior insulation system

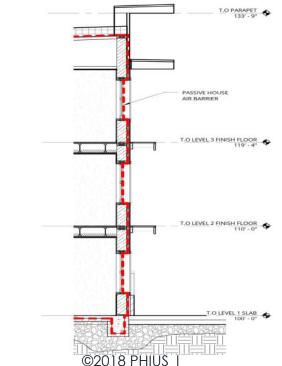
Metal panels and brick exterior finishes

Thermally broken attachments

Source: Jesse Thompson - Uptown Lofts, Pittsburgh, PA

AIRBARRIER JPTOWNLOFTS PITTSBURGH

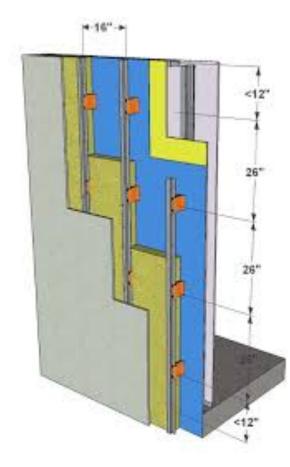
ORCHARDS AT ORENCO

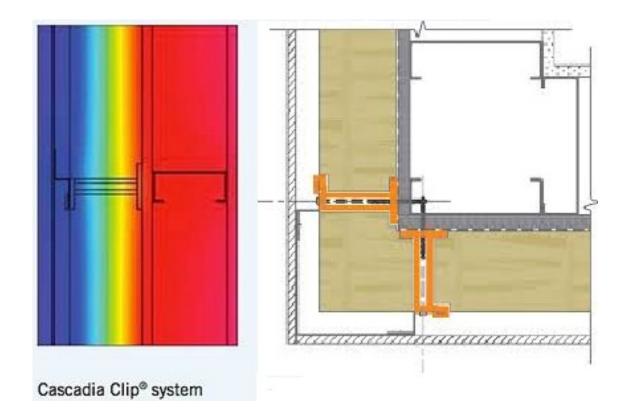

PHI STANDARD: 2X10 Structure
High-density blown in fiberglass
Sheathing
2" exterior mineral wool

Fiber-cement siding, brick, rain screen

Sun shading, parapets, balconies Thermally broken attachments

PHIUS+2015: 2X6 Structure
High-density blown in fiberglass
Sheathing
1.5" exterior mineral wool
Fiber-cement siding, brick, rain




source: www.prosoco.com/r-guard

EXTERIOR AIR BARRIERS

ONTINUOUS INSULATION

THERMAL BREAKS

MINIMIZE POINT TB LOSS

Photo courtesy Jesse Thompson

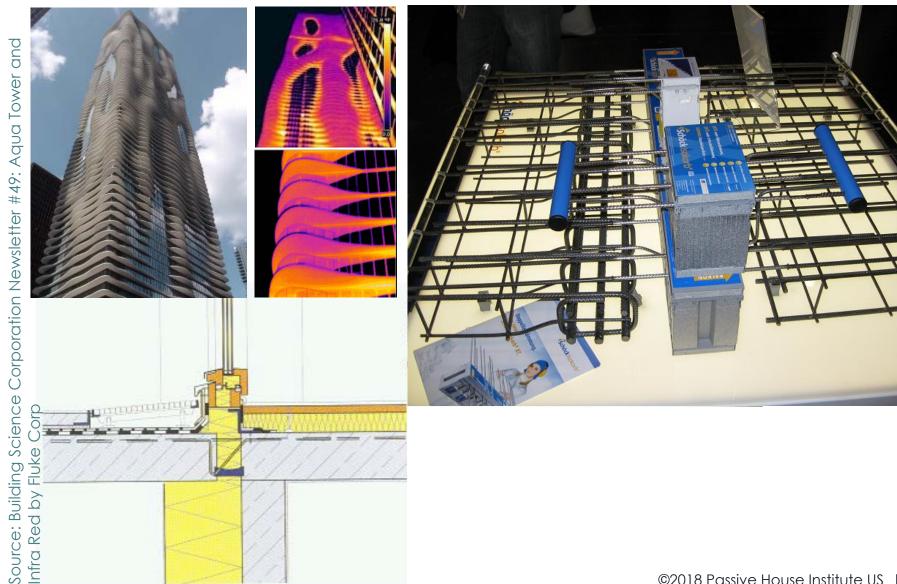
Illustrations by RDH, Shawn Colin, NAPHC 2014

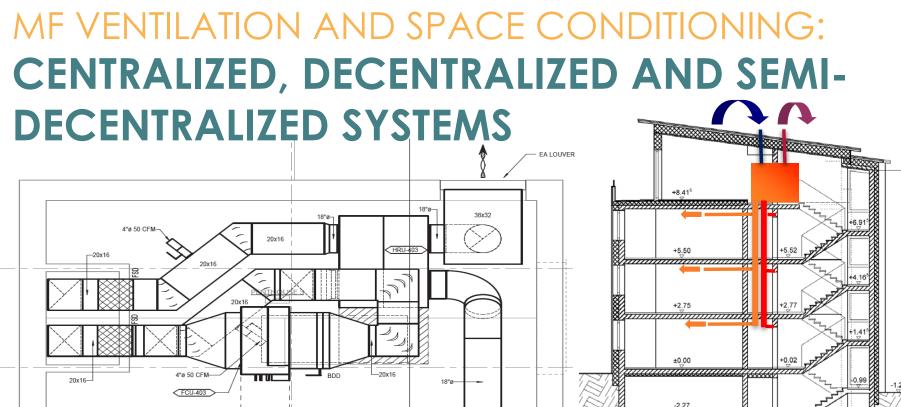
STRUCTURAL THERMAL BRIDGING CAUSED BY CLADDING SYSTEMS ATTACHMENT – RED SPACER BEHIND STAND-OFF=THERMAL BREAK

UPTOWN LOFTS STRUCTURAL THERMAL BRIDGE ISSUE: SEPARATION TO UNCONDITIONED PARKING DECK

		Mechanical Pr	operties	1.000
Tensile Strength	P51		ASTM D638	9,400
Flexural Strength	PSI		ASTM D790	22,300
Compressive Strength	PSI		ASTM D695	38,900
Compressive Modulus	PSI		ASTM D695	1,450,377
Shear Strength	PSI		ASTM D732	13,400
Thickness	īn			1/4", 1/2", 1"
		Flame Resis	tance	
Oxygen Index	%O2		ASTM D2863	21.8
		Thermal Pro	perties	
Coefficient of Thermal Expansion		in/in/ºCx10*	ASTM D696	2.2
Thermal Conductivity		BTU/Hr/ft:/in/°F	ASTM C177	1.8**
		W/m*K		0.259
**Reference: Thermal Conduct	wity of Stepi	BTU/Hoft/In/% Wilm*K		374.5 54.0

Additional Products for Building & Construction





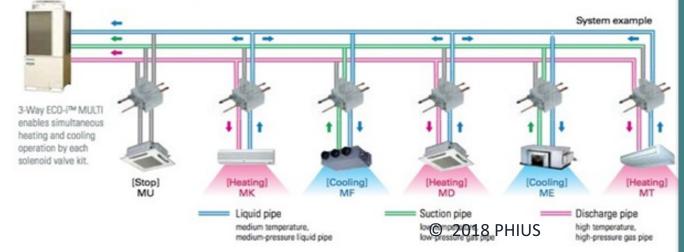
STRUCTURAL THERMAL BREAKS

24x22

<u>uuuun y</u>m

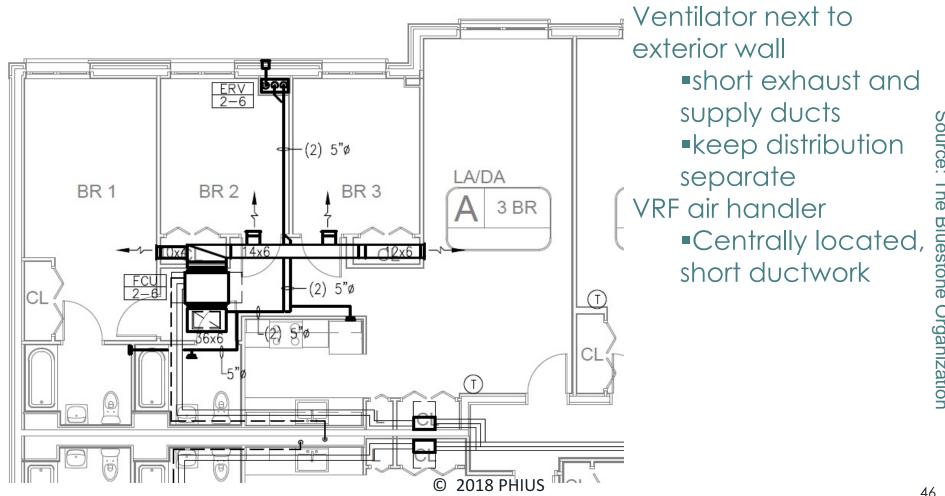
SCHNITT B-B

SEMIDECENTRALIZED

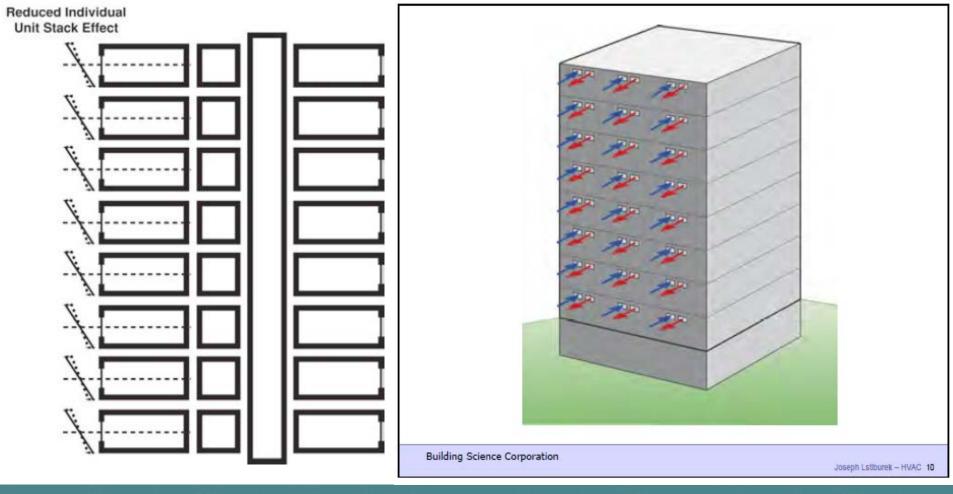

Most common solution - Individual ventilator in each unit

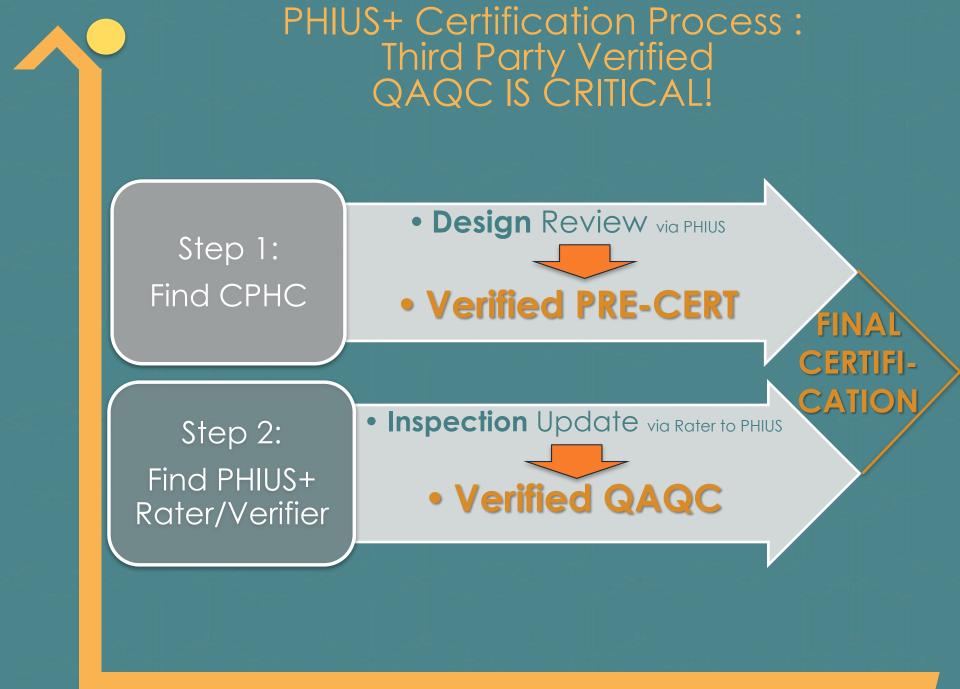
 Individual controls, more accurate ventilation air delivery Solution for local codes where exhaust can not be drawn from all apartments and go through a common air to air heat exchanger

Space conditioning via central VRF system

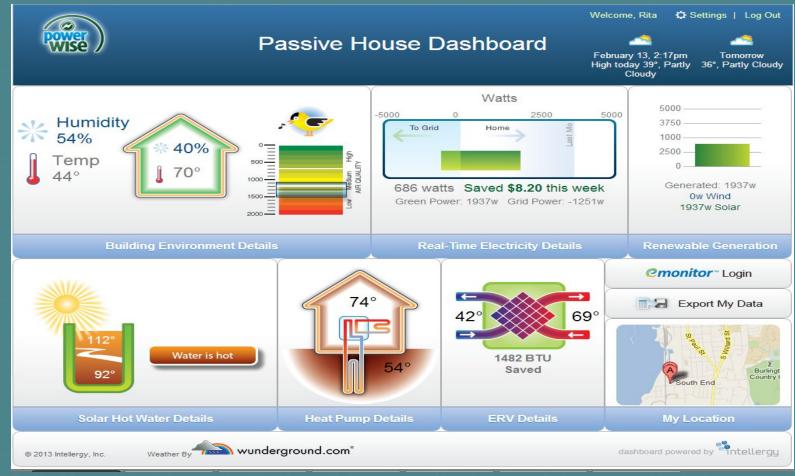

 Separate supply ducts from ventilation air due to different air velocities during space conditioning

Simultaneous Heating & Cooling Operation


APARTMENT SPACE CONDITIONING AND VENTILATION LAYOUT - COMBINED **DISTRIBUTION DUCTS**


DECENTRALIZED SOLUTION

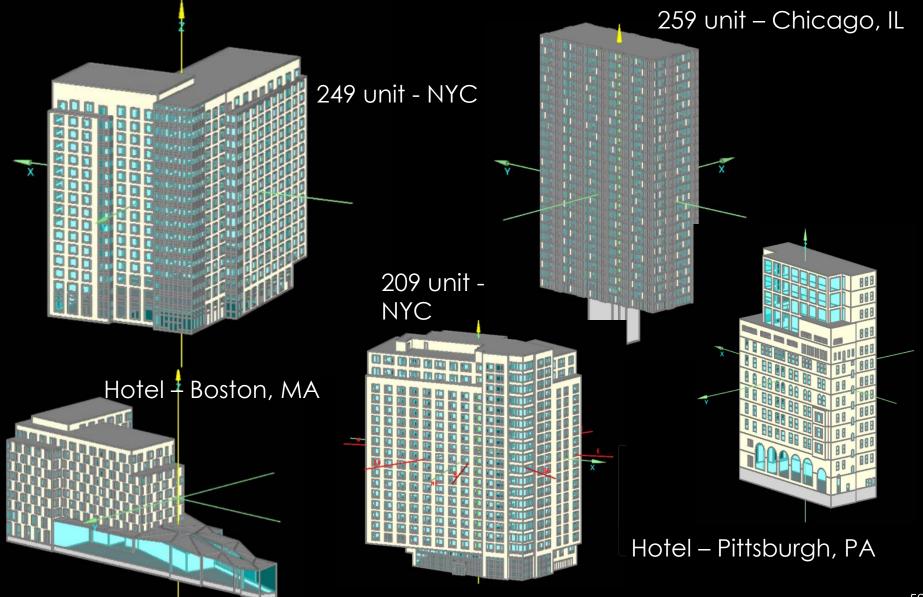
© 2018 PHIUS



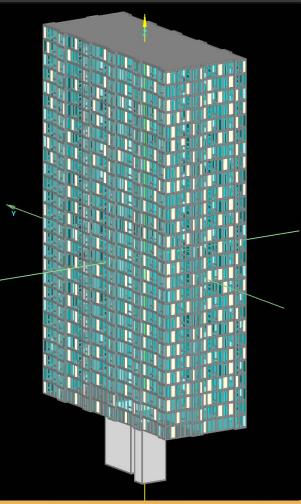
COMPARTMENTALIZATION OF UNITS TO CONTROL STACK EFFECT IDEALLY ONE VENTILATOR PER UNIT FOR INDIVIDUAL CONTROL ©2018 Passive House Institute US

© 2018 PHIUS

Recommended, Not Required: Post-occupancy performance monitoring & verification: CONTINUOUS COMMISSIONING:



SUITE OF PROFESSIONAL CERTIFICATES

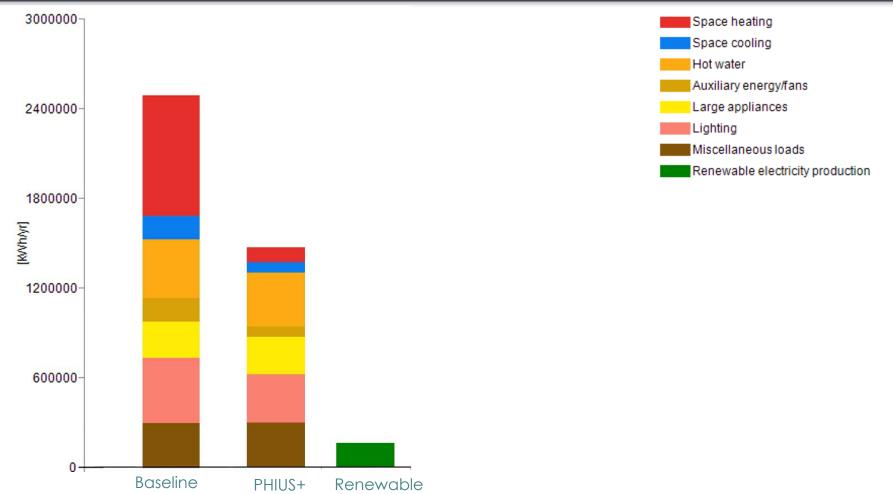

CERTIFIED PASSIVE HOUSE CONSULTANT, CPHC® PHIUS CERTIFIED BUILDER PHIUS+ CERTIFIED RATER PHIUS+ CERTIFIED VERIFIER

FEASIBILITY STUDIES

High Rise Case Studies

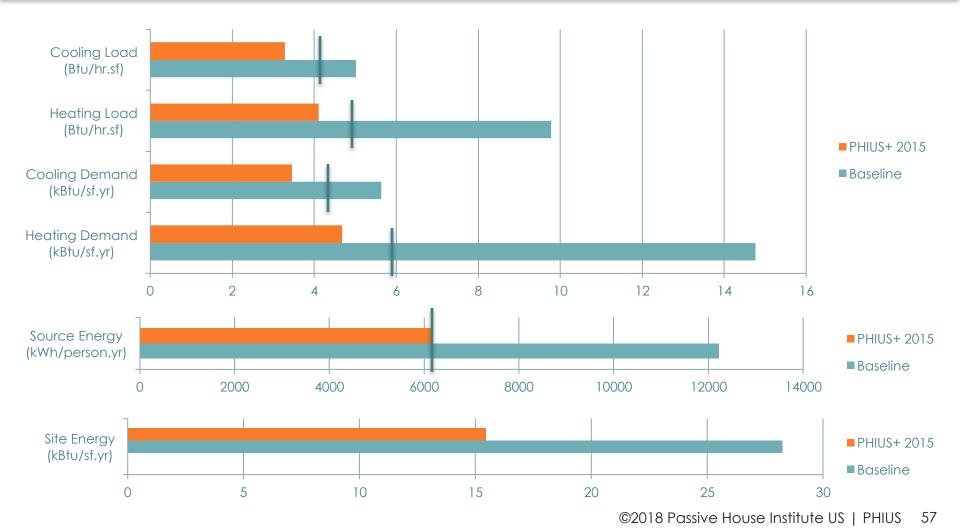
Residential

Residential Tower Envelope Improvements


PROPOSED PHIUS+ 2015 Envelope Windows Uw-0.38 Uw-0.22 +42% SHGC: 0.3 SHGC: 0.4 **Opague Wall Panels** R20.5 R20.5 Roof R25 R35 SAME Ceiling of Parking Garage R30 R30 Slab on Grade R15 R15 0.32 cfm/ft2 @ 50Pa Airtighntess 0.08 cfm/ft2 @50 Pa .4 cfm/ft2 @ 75 Pa 0.1 cfm/ft2 @75 Pa +75%

Residential Tower Lighting & HVAC Improvements

PROPOSED	PHIUS+ 2015	-
0.7 W/sf	0.5 W/sf for 18 hrs/day. For 6hrs/day, 0.25 W/sf with occupancy sensors, reducing average of 6 hours to 0.39 W/sf.	-45%
	-	
13	17	
50%	85%	
50% Heat Pump with COP of 3 50% Electric Heating	Heat Pump with COP of 4	
Gas Hot Water Heater 83% efficient	- Gas Hot Water Heater - 95% efficient	
	0.7 W/sf 13 13 50% 50% Heat Pump with COP of 3 50% Electric Heating Gas Hot Water Heater	0.7 W/sf0.5 W/sf for 18 hrs/day. For 6hrs/day, 0.25 W/sf with occupancy sensors, reducing average of 6 hours to 0.39 W/sf.131750%85%50% Heat Pump with COP of 3 50% Electric HeatingHeat Pump with COP of 4Gas Hot Water Heater -Gas Hot Water Heater -


Residential Tower

Lighting & HVAC Improvements

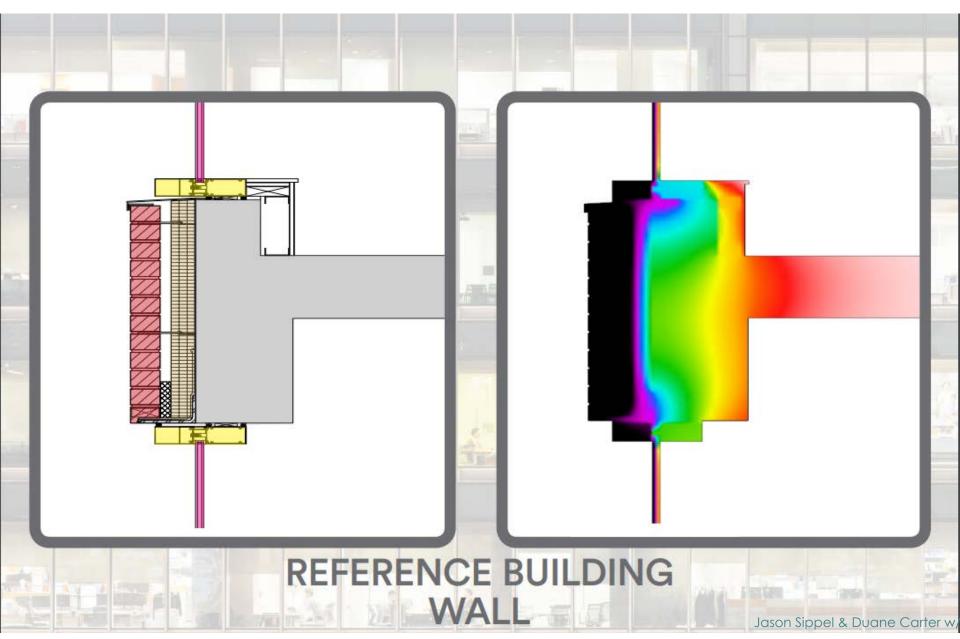
Residential Tower

Improvements

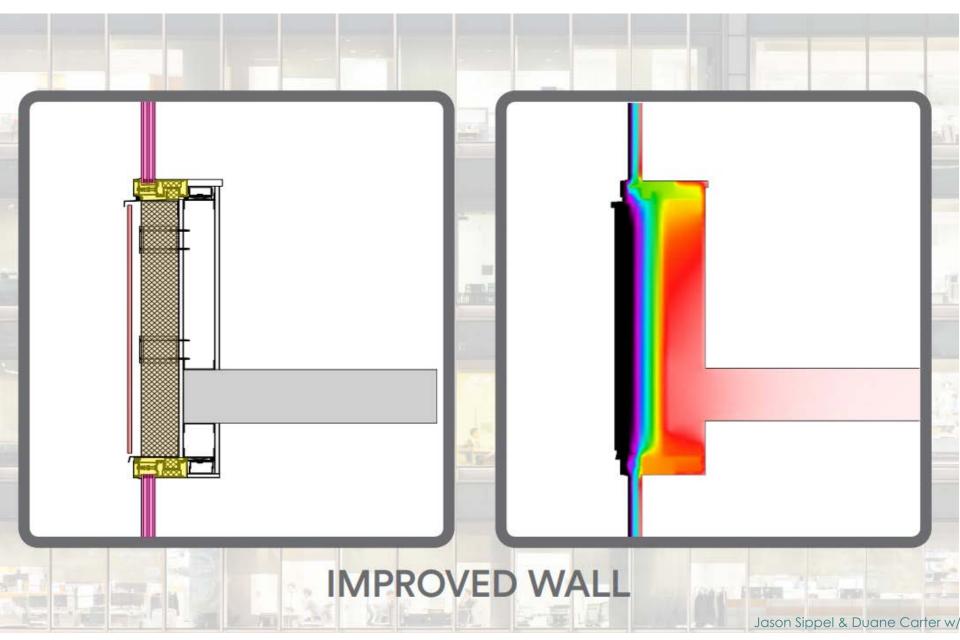
Residential Tower SUMMARY

•Internal Load Dominated

•Common Lighting (Hallways) = Largest Energy Hog


Windows, windows, windows Optimize gains/losses = Heating/Cooling

•Walls/Roof •Moderate R-values = Ok!


Peak Loads
 + Efficiency Mechanical Systems

•Careful Design – A little PV goes a long way

Hypothetical Details

Hypothetical Details

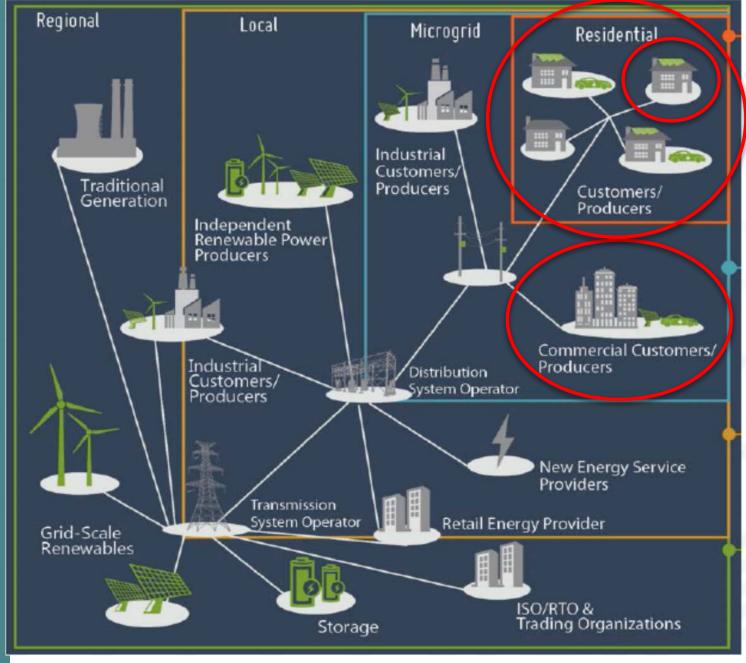
ADVOCACY & RESOURCE SHARING COMMERCIAL/LARGE MULTIFAMILY RESOURCE CENTER www.phius.org

COMFORT. QUALITY. EFFICIENCY. RESILIENCY. AFFORDABILITY. NOW.

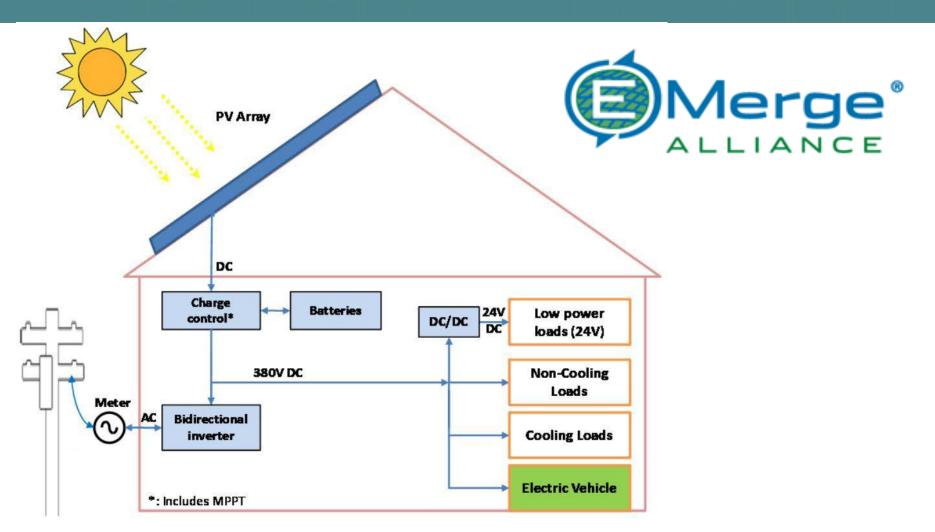
COMMERCIAL DEVELOPERS RESOURCE CENTER

New!

Bookmark multifamily.phius.org & commercial.phius.org today!

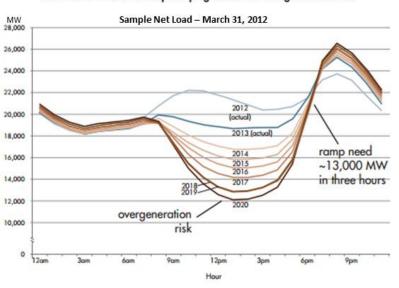

For Developers, Architects & Engineers, Investors, Policy Makers & more!

The efficient, resilient, and affordable path to NET ZERO.



H BUILDINGS Z Ш PASSIVE

Source: Melton, R. PNNL, 2004. Transactive Energy, Presentation


DIRECT CURRENT MICROGRID

http://energy.gov/sites/prod/files/2015/03/f20/DC_Microgrid_Scoping_Study_ LosAlamos-Mar2015.pdf

THERMAL STORAGE & ENERGY STORAGE

The duck curve shows steep ramping needs and overgeneration risk

(from the California Independent System Operator)

Beach Green North, New York, NY

LARGEST MIDRISE IN QUEENS, COMPLETED WITH 101 UNITS, 1% ADDITIONAL COST

©2018 Passive House Institute US | PHIUS 66

Rocky Mountain Institute Innovation Center, Basalt, CO

NEW RMI HEADQUARTERS IN BASALT

©2018 Passive House Institute US | PHIUS 68

JOIN US! PATH TO ZERO, COMFORT&HEALTH, CARBON ACTION

13th Annual North American Passive House Conference

Join us in Boston at the Seaport Hotel & World Trade Center

September 19 - 23, 2018

Call for Papers - Deadline April 30

IBP

PASSIVE BUILDING IS PART OF THE SOLUTION

Katrin Klingenberg, Executive Director www.PHIUS.org/www.PHAUS.org

