Batteries: Now and Future

Yi Cui

Department of Materials Science and Engineering Stanford University Stanford Institute for Materials and Energy Sciences SLAC National Accelerator Laboratory

Mobile Phone Evolution

Battery in iphone 6 plus

iPhone 6 Plus

iPhone 1st Generation iPhone 3G iPhone 4G iPhone 4S iPhone 5C iPh

Drone

Electrical Vehicles

Stationary Storage

CA, ~60 GWh World ~10 TWh

 $\sim \! 70 Wh$

~10 Wh 1 billion pieces/yr

~85,000Wh

How far can battery technology go?

- Energy density (Wh/kg, Wh/L)
- Cost (\$/kWh)
- Safety
- Cycle life
- Charge rate

Lithium Ion Battery Cells: Now and Future Goals

Safety

High energy density (weight/volume) -Range increase -Lower cost

Revolution in Transportation, Grid, Renewable

How do We Store Electrons?

$e^{-} + M^{+} \longleftrightarrow M$ $e^{-} + M^{+} + Host \longleftrightarrow MHost$		
atomic weight	M maximum voltage	M cost (\$/kg)
h Pb ^{2+/4+} (207)	▲Li+(<4.5V)	↑ Li (40)*
$ \begin{array}{c c} Zn^{2+}(65) \\ Al^{3+}(27) \end{array} $	Na ⁺ (<4.2V)	Na(1)
$Mg^{2+}(25)$	Mg ²⁺ (<~3.8V)	Mg (2)
Na ⁺ (23)	Al ³⁺ (<~3.1V)	A1(2)
Li ⁺ (7)	$Zn^{2+} (< 2.2V)$	Zn (2)
H ⁺ (1)	$Pb^{2+/4+}$ (<2.1V)	Pb (2)
1	I H ⁺ (<~1.5V)	H (nearly free)

Μ

*The cost of Li in Li ion batteries is only $\sim 3\%$.

Battery Operation: Li Ion Batteries

Materials issues of batteries

- Electron transport in solid
- Ionic diffusion in liquid and solid
- Structure/volume change: strain
- Solid electrolyte intephase (SEI)

High Energy Lithium Batteries

Negative electrodes

Theoretical Specific Energy

Grid-Scale Storage Technology

Liquid metal batteries D. Sadoway, *JACS* 134, 1895 (2012)

> Mg||Sb liquid metal battery

Mg_{liq} (–) molten salt (Mg-Sb)_{liq} (+)

Semi-solid flow batteries

Y.M Chiang, C. Carter Adv. Eng. Mater. 2011, 1, 511

Quinone-based flow batteries

(M. Aziz, R. Gordon, A. Aspuru-Guzik Nature 505, 195 2014)

Li-polysulfide semiflow batteries

Y. Yang, G. Zheng, Y. Cui Energy Environ. Sci 2013,6, 1552-1558.

High Energy Batteries: Paradigm Shift

Stable Host: past 20 years

No bond breaking

Significant bonding breaking

Host atoms do not move

Host atoms move

Little structure change

Complete structure change

Volume change <10% Volume change $\sim100\%$

New challenges:

- Atomic bonding level: reversibility
- Individual material particle level: breaking, SEI, phases
- The whole electrode level: expansion, breaking

Outline

High Energy: - Si, P, Li metal anodes - S cathodes

Nature Nanotechnology 3, 31 (2008). Nature Nanotechnology 7, 310 (2012). Nature Communication 4: 1331 (2013). Nature Chemistry 5, 1042 (2013). Nature Nanotechnology 9, 187 (2014). Nature Nanotechnology 9, 618 (2014).

Battery Safety

Nature Communications 5: 5193 (2014).

Dendrite detected (battery still safe)

Loss of percelation pathway

Silicon Anodes With 11X Specific Capacity

Problems:

1) How to avoid breaking?

2) How to build stable solid-electrolyte-interphase (SEI)?

In-situ Transmission Electron Microscopy (TEM)

Nanofactory TEM-STM holder (M. McDowell, C. Wang, Yi Cui, *Nano Energy* 1, 401, 2012)

Fracture of Surface Cu Coatings

¹⁷ 5x actual speed

Nanoparticle critical breaking size: ~150nm Nanowire critical breaking size: ~300nm

(M. McDowell, I. Ryu, S.W. Lee, W. Nix, Y. Cui Adv. Materials 24, 6034 (2012))

11 Generations of Si Anode Design from Cui Group

Gen 2: Core-Shell Nanowire

Nano Letters 9, 491 (2009).

Gen 3: Hollow

Nano Letters 11, 2949 (2011).

Gen 4: Double-walled hollow

Nature Nanotechnology 7, 310 (2012).

Gen 6: Si-hydrogel

Nature Communication 4:1943 (2013) with Zhenan Bao

11 Generations of Si Anode Design from Cui Group

Gen 7: Self-Healing

Nature Chemistry 5, 1042 (2013). with Zhenan Bao

Gen 8: Pomegranate-Like

Nature Nanotechnology 9, 187 (2014).

Gen 10: Prelithiation of Si anodes

Nature Communications 5, 5088, 2014

Gen 9: Non-filling carbon coating or porous Si

ACS Nano 9, 2540 (2015).

Gen 11: Micro-Si gaphene cage *Nature Energy* 15029, 2016

Gen 4: Double Walled Hollow Structure: Stable Solid Electrolyte Interphase (SEI)

(Hui Wu, Yi Cui Nature Nanotech 7, 310 (2012))

Double-Walled Si Nanotubes

- Outer diameter has no change.
- Inner diameter changes.

(Hui Wu, Yi Cui Nature Nanotech 7, 310 (2012))

Ultralong Cycle Life of Si Nanotubes

Gen 8: Pomegranate-Like Si Batteries

N. Liu, Z. Lu, Y. Cui Nature Nanotech 9, 187 (2014).

Gen 8: Pomegranate-Like Si Batteries

N. Liu, Z. Lu, Y. Cui Nature Nanotech 9, 187 (2014).

Gen 8: Pomegranate-Like Si Batteries

Micron Si Particles as Anodes

(Y. Li, K. Yan, Y. Cui Nature Energy 15029, 2016)

(Y. Li, K. Yan, Y. Cui Nature Energy 15029, 2016)

Amorphous carbon cage

Graphene cage

(Y. Li, K. Yan, Y. Cui Nature Energy 15029, 2016)

Host: Graphite, Si No Host: Li metal, electroplating

Nanoscale Interfacial Materials Design

Stable interfacial design using nanomaterials: chemically and mechanically stable

Guangyuan Zheng, Steven Chu, Yi Cui . Nature Nanotechnology 9, 618 (2014).

Interconnected Hollow Carbon Sphere Fabrication

Guangyuan Zheng, Steven Chu, Yi Cui . Nature Nanotechnology 9, 618 (2014).

After Li metal electrodeposition

Guangyuan Zheng, Steven Chu, Yi Cui . Nature Nanotechnology 9, 618 (2014).

Guangyuan Zheng, Steven Chu, Yi Cui . Nature Nanotechnology 9, 618 (2014).

Do we understand how Li metal nucleates on different substrate?

1 M LiPF₆ in EC:DEC

K Yan, S. Chu, Y. Cui Nature Energy (March, 2016)

Phase Diagrams of Li-Cu and Li-Au

Cu has negligible solubility in Li. Au has some solubility in Li.

K Yan, S. Chu, Y. Cui Nature Energy (March, 2016)

K Yan, S. Chu, Y. Cui Nature Energy (March, 2016)

Seeded Li Metal Deposition fro Spatial Control

K Yan, S. Chu, Y. Cui Nature Energy (March, 2016)

Nanocapsule as a "Host" for Lithium Metal

K Yan, S. Chu, Y. Cui Nature Energy (March, 2016)

K Yan, S. Chu, Y. Cui Nature Energy (March, 2016)

In-situ TEM

Global reserve of lithium: 40 million ton

Nissan Leaf, 24 kWh, 84 miles 4 kg Lithium **10 Billion Leaf** Tesla S model, 85 kWh, 265 miles 14 kg Lithium **3 Billion Tesla**

There are ~1 billion cars in the world.

In 2009, Li production: 92,000 ton, which is 23,000,000 Nissan Leaf.

Ocean: 230,000 million ton (0.1778ppm)

World Electricity Consumption: ~4 TW Need TeraBattery for 6 hours: ~24 TWh

Global reserve of lithium: 40 million ton Battery 240TWh

Battery Safety: Reversible Thermal Fuse

а

Z. Chen, Y. Cui, Z. Bao Nature Energy (2016)

Ni Nanospikes coated with graphene

Ni nanospikes mixed with polyethylene polymer

Z. Chen, Y. Cui, Z. Bao Nature Energy (2016)

Reversible Thermal Fuse

Normal T

e

High T

Normal T

Reversible Thermal Fuse

Z. Chen, Y. Cui, Z. Bao Nature Energy (2016)

Lithium Ion Battery Cells: Now and Future Goals

Safety

Acknowledgement

Funding

- DOE EERE Vehicle Program, BMR
- JCESR (Joint Center for Energy Storage Research)
- Global Climate & Energy Projects (Stanford)
- Precourt Institute for Energy (Stanford)
- ONR Young Investigator

Collaborators:

- William Nix
- Mike Toney (SLAC)
- Zhenan Bao
- Robert Huggins
- Steven Chu